Skip to main content
Log in

Simulation study on the conformational properties of an adsorbed polymer on a nanoparticle

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The conformational properties of a polymer chain adsorbed on an attractive spherical nanoparticle are studied by using Monte Carlo simulations. The adsorption degree of polymer is described by the number of adsorbed monomers n a and the length of adsorbed block l a . The configuration of the adsorbed polymer on a nanoparticle is described by trains, loops, and tails. We find three different structures for the adsorbed polymer: a structure with trains, loops, and tails at small polymer-nanoparticle interaction strength ε pn , a structure with a train and a tail at large ε pn , and a structure with trains and loops at large n a . In addition, we find that the mean number of adsorbed monomers <n a  > is scaled with l a as <n a  > ~ l a α at ε pn  ≥ 1, and the exponent α increases with ε pn . Our results indicate that both the adsorption degree and the configuration of the adsorbed polymer are dependent on the polymer-nanoparticle interaction strength, the number of adsorbed monomers, and the length of adsorbed block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Neyret S, Ouali L, Candau F, Pefferkorn E (1995) Adsorption of polyampholytes on polystyrene latex: effect on colloid stability. J Colloid Interface Sci 176:86–94

    Article  CAS  Google Scholar 

  2. Meredith JC, Johnston KP (1998) Theory of polymer adsorption and colloid stabilization in supercritical fluids. 2. copolymer and end-Grafted stabilizers. Macromolecules 31:5518–5528

    Article  CAS  Google Scholar 

  3. Jun S, Mulder B (2006) Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome. Proc Natl Acad Sci U S A 103:12388–12393

    Article  CAS  Google Scholar 

  4. Williams MC (2007) Stuffing a virus with DNA: Dissecting viral genome packaging. Proc Natl Acad Sci U S A 104:11125–11126

    Article  CAS  Google Scholar 

  5. Walheim S, Schaffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283:520–522

    Article  CAS  Google Scholar 

  6. Brown S (1997) Metal-recognition by repeating polypeptides. Nature Biotechnol 15:269–272

    Article  CAS  Google Scholar 

  7. Braun R, Sarikaya M, Schulten K (2002) Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics. J Biomater Sci Polym Ed 13:747–757

    Article  CAS  Google Scholar 

  8. Bachmann M, Goede K, Beck-Sickinger AG, Grundmann M, Irback A, Janke W (2010) Microscopic mechanism of specific peptide adhesion to semiconductor substrates. Angew Chem Int Ed 49:9530–9533

    Article  CAS  Google Scholar 

  9. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directednanocrystal assembly. Nature 405:665–668

    Article  CAS  Google Scholar 

  10. Goede K, Busch P, Grundmann M (2004) Binding specificity of a peptide on semiconductor surfaces. Nano Lett 4:2115–2120

    Article  CAS  Google Scholar 

  11. Arkin H, Janke W (2012) Structural behavior of a polymer chain inside an attractive sphere. Phys Rev E 85:051802

    Article  Google Scholar 

  12. Arkin H, Janke W (2013) Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J Chem Phys 138:054904

    Article  Google Scholar 

  13. Saito Y, Hirose Y, Otsubo Y (2012) Size effect on the rheological behavior of nanoparticle suspensions in associating polymer solutions. Colloid Polym Sci 290:251–259

    Article  CAS  Google Scholar 

  14. Yang QH, Qian CJ, Li H, Luo MB (2014) Dynamics of a polymer adsorbed to an attractive homogeneous flat surface. Phys Chem Chem Phys 16:23292–23300

    Article  CAS  Google Scholar 

  15. Strathmann JL, Rampf F, Paul W, Binder K (2008) Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model. J Chem Phys 128:064903

    Article  Google Scholar 

  16. Debell K, Lookman L (1993) Surface phase transitions in polymer systems. Rev Mod Phys 65:87–113

    Article  CAS  Google Scholar 

  17. Gong YC, Wang YM (2002) Partitioning of polymers into pores near the critical adsorption point. Macromolecules 35:7492–7498

    Article  CAS  Google Scholar 

  18. Descas R, Sommer JU, Blumen A (2004) Static and dynamic properties of tethered chains at adsorbing surfaces: A Monte Carlo study. J Chem Phys 120:8831–8840

    Article  CAS  Google Scholar 

  19. Furusawa K, Shou Z, Nagahashi N (1992) Polymer adsorption on fine particles: the effects of particle size and its stability. Colloid Polym Sci 270:212–218

    Article  Google Scholar 

  20. Li CY, Cao WP, Luo MB, Li H (2016) Adsorption of polymer on an attractive nano-sized particle. Colloid Polym Sci 294:1001–1009

    Article  CAS  Google Scholar 

  21. Guzman E, Ortega F, Prolongo MG, Starov VM, Rubio RG (2011) Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Phys Chem Chem Phys 13:16416–16423

    Article  CAS  Google Scholar 

  22. Yang QH, Luo MB (2016) Dynamics of adsorbed polymers on attractive homogeneous surfaces. Sci Rep 6:37156

    Article  Google Scholar 

  23. Li H, Qian CJ, Luo MB (2012) Simulation of a flexible polymer tethered to a flat adsorbing surface. J Appl Polym Sci 124:282–287

    Article  CAS  Google Scholar 

  24. Bussiere PO, Therias S, Gardette JL, Murariu M, Dubois P, Baba M (2012) Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid). Phys Chem Chem Phys 14:12301–12308

    Article  CAS  Google Scholar 

  25. Liu J, Wu SZ, Zhang LQ, Wang WC, Cao DP (2011) Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys Chem Chem Phys 13:518–529

    Article  CAS  Google Scholar 

  26. Suzuki N, Zakaria MB, Chiang YD, Wu KC, Yamauchi Y (2012) Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys Chem Chem Phys 14:7427–7432

    Article  CAS  Google Scholar 

  27. Milchev A, Binder K (1996) Static and dynamic properties of adsorbed chains at surfaces: Monte Carlo simulation of a bead-spring model. Macromolecules 29:343–354

    Article  CAS  Google Scholar 

  28. Eisenriegler E, Kremer K, Binder K (1982) Adsorption of polymer chains at surfaces: Scaling and Monte Carlo analyses. J Chem Phys 77:6296–6320

    Article  CAS  Google Scholar 

  29. Valentin JL, Mora-Barrantes I, Carretero-Gonzalez J, Lopez-Manchado MA, Sotta P, Long DR, Saalwachter K (2010) Novel experimental approach to evaluate filler−elastomer interactions. Macromolecules 43:334–346

    Article  CAS  Google Scholar 

  30. Li H, Gong B, Qian CJ, Luo MB (2015) Critical adsorption of a flexible polymer on a stripe-patterned surface. Soft Matter 11:3222–3231

    Article  CAS  Google Scholar 

  31. Dionne PJ, Picu CR, Ozisik R (2006) Dynamics of adsorption-desorption of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. Macromolecules 39:3089–3092

    Article  CAS  Google Scholar 

  32. Ozmusul MS, Picu CR, Sternstein SS, Kumar SK (2005) Lattice monte carlo simulations of chain conformations in polymer nanocomposites. Macromolecules 38:4495–4500

    Article  CAS  Google Scholar 

  33. Sikorski A (2002) Structure of adsorbed polymer chains: A Monte Carlo study. Macromol Theory Simul 11:359–364

    Article  CAS  Google Scholar 

  34. Liu H, Chakrabarti A (1999) Molecular dynamics study of adsorption and spreading of a polymer chain onto a flat surface. Polymer 40:7285–7293

    Article  CAS  Google Scholar 

  35. Sanchez PA, Cerda JJ, Ballenegger V, Sintes T, Piro O, Holm C (2011) Semiflexible magnetic filaments near attractive flat surfaces: a Langevin dynamics study. Soft Matter 7:1809–1818

    Article  CAS  Google Scholar 

  36. Bogner T, Degenhard A, Schmid F (2004) Molecular recognition in a lattice model: an enumeration study. Phys Rev Lett 93:268108

    Article  Google Scholar 

  37. Balog E, Becker T, Oettl M, Lechner R, Daniel R, Finney J, Smith JC (2004) Direct determination of vibrational density of states change on ligand binding to a protein. Phys Rev Lett 93:028103

    Article  Google Scholar 

  38. Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94:078102

    Article  Google Scholar 

  39. Gupta N, Irback A (2004) Coupled folding-binding versus docking: a lattice model study. J Chem Phys 120:3983–3989

    Article  CAS  Google Scholar 

  40. Li CY, Zhang S, Huang JH, Luo MB (2014) Size and diffusion of polymer in media filled with periodic fillers. E-Polymers 14:35–41

    Google Scholar 

  41. Li CY, Luo MB, Huang JH, Li H (2015) Equilibrium and dynamical properties of polymer chains in random medium filled with randomly distributed nano-sized fillers. Phys Chem Chem Phys 17:31877–31886

    Article  CAS  Google Scholar 

  42. Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301

    Article  Google Scholar 

  43. Li CY, Qian CJ, Yang QH, Luo MB (2014) Study on the polymer diffusion in a media with periodically distributed nano-sized fillers. J Chem Phys 140:104902

    Article  Google Scholar 

  44. Wang Y, Rajagopalan R, Mattice WL (1995) Kinetics of detachment of homopolymers from a solid surface. Phys Rev Lett 74:2503–2506

    Article  CAS  Google Scholar 

  45. Zheng X, Sauer BB, van Alsten JG, Schwarz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Reptation dynamics of a polymer melt near an attractive solid interface. Phys Rev Lett 74:407–410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY15A040009 and LQ14A040001 and the National Natural Science Foundation of China under Grant Nos. 11374255 and 11474222. Computer simulations were carried out in the High Performance Computing Center of Hangzhou Normal University, College of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Yang Li.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Luo, MB., Li, H. et al. Simulation study on the conformational properties of an adsorbed polymer on a nanoparticle. Colloid Polym Sci 295, 2251–2260 (2017). https://doi.org/10.1007/s00396-017-4201-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4201-y

Keywords

Navigation