Skip to main content
Log in

Adsorption of polymer on an attractive nano-sized particle

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The adsorption of a polymer chain on an attractive nano-sized spherical particle is studied by using Monte Carlo simulation. The polymer-particle interaction is treated as Lennard-Jones potential with strength ε PP. The critical adsorption point ε * PP is estimated from the largest fluctuation of the number of monomers contacted with particle. We find that ε * PP is dependent on the comparison between particle size σ p and R G0, the mean radius of gyration of polymer in dilute solution. ε * PP decreases with an increase in σ p at σ p  < R G0 and is independent of σ p at σ p  ≥ R G0. The polymer starts to be adsorbed on particle, and the mean contact time begins to increase at ε * PP. In addition, the structural property characterized by trains, loops, and tails is investigated for polymer contacted with particle. Results show that the structure is dependent on the interaction strength ε pp. We find that both the number of monomers contacted with the particle and the length of trains increase with ε pp, whereas lengths of tail and loop decrease with the increase in ε pp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Q, Archer L (2004) Optical polarimetry and mechanical rheometry of poly(ethylene oxide)-silica dispersions. Macromolecules 37:1928–1936

    Article  CAS  Google Scholar 

  2. Zhang Q, Archer L (2002) Poly (ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  3. Zhu Z, Thompson T, Wang SQ, Von Meerwall ED (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

  4. Ozisik R, Zheng J, Dionne PJ, Picu CR, Von Meerwall ED (2005) NMR relaxation and pulsed-gradient diffusion study of polyethylene nanocomposites. J Chem Phys 123:134901

    Article  CAS  Google Scholar 

  5. Dionne PJ, Ozisik R, Picu CR (2005) Structure and dynamics of polyethylene nanocomposites. Macromolecules 38:9351–9358

    Article  CAS  Google Scholar 

  6. Sikorski A, Adamcayk P (2010) Diffusion of polymer chains in porous media: a Monte Carlo study. Polymer 51:581–586

    Article  CAS  Google Scholar 

  7. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  8. Crawford MK, Smalley RJ, Cohen G, Hogan B, Wood B, Kumar SK, Melnichenko YB, He L, Guise W, Hammouda B (2013) Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles. Phys Rev Lett 110:196001

    Article  CAS  Google Scholar 

  9. Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issue in research on structure-property relationships in polymer nanocomposites. Polymer 51:3321–3343

    Article  CAS  Google Scholar 

  10. Dewimille L, Bresson B, Bokobza L (2005) Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles. Polymer 46:4135–4143

    Article  CAS  Google Scholar 

  11. Park JH, Jana SC (2003) The relationship between nano- and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites. Polymer 44:2091–2100

    Article  CAS  Google Scholar 

  12. Gam S, Meth JS, Zane SG, Chi C, Wood BA, Seitz ME, Winey KI, Clarke N, Composto RJ (2011) Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules 44:3494–3501

    Article  CAS  Google Scholar 

  13. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319

    Article  CAS  Google Scholar 

  14. Stojanovic D, Orlovic A, Markovic S, Radmilovic V, Uskokovic PS, Aleksic R (2009) Nanosilica/PMMA composites obtained by the modification of silica nanoparticles in a supercritical carbon dioxide-ethanol mixture. J Mater Sci 44:6223–6232

    Article  CAS  Google Scholar 

  15. Ndoro TVM, Voyiatais E, Ghanbari A, Theodorou DN, Bohm MC, Muller-Plathe F (2011) Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules 44:2316–2327

    Article  CAS  Google Scholar 

  16. Koenig JL (1999) The chemical reactions of network structures in elastomers. Acc Chem Res 32:1–8

    Article  CAS  Google Scholar 

  17. Zhang Y, Ge S, Tang B, Koga T, Rafailovich MH, Sokolov JC, Peiffer DG, Li Z, Dias AJ, McElrath KO, Lin MY, Satija SK, Urquhart SG, Ade H, Nguyen D (2001) Effect of carbon black and silica fillers in elastomer blends. Macromolecules 34:7056–7065

    Article  CAS  Google Scholar 

  18. Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim HC, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat Mater 2:762–766

    Article  CAS  Google Scholar 

  19. Saito Y, Hirose Y, Otsubo Y (2012) Size effect on the rheological behavior of nanoparticle suspensions in associating polymer solutions. Colloid Polym Sci 290:251–259

    Article  CAS  Google Scholar 

  20. Starr FW, Schroder TB, Glotzer SC (2001) Effects of a nano-sized filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films. Phys Rev E 64:021802–021806

    Article  CAS  Google Scholar 

  21. Khan SB, Akhtar K, Seo J, Han H, Rub MA (2012) Effect of nano-filler dispersion on the thermal, mechanical and water sorption properties of green environmental polymer. J Polym Sci 30:735–743

    CAS  Google Scholar 

  22. Guadalupe NVM, Francisco RV, Ernesto HH, Ivan ZG (2008) Surface modification of carbon nanofibers (CNFs) by plasma polymerization of methylmethacrylate and its effect on the properties of PMMA/CNf nanocomposites. e-Polymers 162:1–11

    Google Scholar 

  23. Hore MJA, Frischknecht AL, Composto RJ (2012) Nanorod assemblies in polymer films and their dispersion-dependent optical properties. ACS Macro Lett 1:115–121

    Article  CAS  Google Scholar 

  24. White SI, Mutiso RM, Vora PM, Jahnke D, Hsu S, Kikkawa JM, Li J, Fischer JE, Winey KI (2010) Electrical percolation behavior in silver nanowire-polystyrene composites: simulation and experiment. adv. Funct Mater 20:2709–2716

    Article  CAS  Google Scholar 

  25. Valentin JL, Mora-Barrantes I, Carretero-Gonzalez J, Lopez-Manchado MA, Long DR, Saalwachter K (2010) Novel experimental approach to evaluate filler-elastomer interactions. Macromolecules 43:334–346

    Article  CAS  Google Scholar 

  26. Vacatello M (2001) Monte Carlo simulations of polymer melts filled with solid nanoparticles. Macromolecules 34:1946–1952

    Article  CAS  Google Scholar 

  27. Vacatello M (2002) Chain dimensions in filed polymers: an intriguing problem. Macromolecules 35:8191–8193

    Article  CAS  Google Scholar 

  28. Cao WP, Sun LZ, Wang C, Luo MB (2011) Monte Carlo simulation on polymer translocation in crowded environment. J Chem Phys 135:174901

    Article  Google Scholar 

  29. Li CY, Qian CJ, Yang QH, Luo MB (2014) Study on the polymer diffusion in a media with periodically distributed nano-sized fillers. J Chem Phys 140:104902

    Article  Google Scholar 

  30. Li CY, Zhang S, Huang JH, Luo MB (2014) Size and diffusion of polymer in media filled with periodic fillers. e-Polymers 14:35–41

    Google Scholar 

  31. Eisenriegler E, Kremer K, Binder K (1982) Adsorption of polymer chains at surfaces: scaling and Monte Carlo analyses. J Chem Phys 77:6296

    Article  CAS  Google Scholar 

  32. Milchev A, Binder K (1996) Static and dynamic properties of adsorbed chains at surfaces: Monte Carlo simulation of a bead-spring model. Macromolecules 29:343–354

    Article  CAS  Google Scholar 

  33. Descas R, Sommer JU, Blumen A (2004) Static and dynamic properties of tethered chains at adsorbing surfaces: a Monte Carlo study. J Chem Phys 120:8831

    Article  CAS  Google Scholar 

  34. Li H, Qian CJ, Luo MB (2012) Simulation of a flexible polymer tethered to a flat adsorbing surface. J Appl Polym Sci 124:282–287

    Article  CAS  Google Scholar 

  35. Dionne PJ, Picu CR, Ozisik R (2006) Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: a Monte Carlo investigation. Macromolecules 39:3089–3092

    Article  CAS  Google Scholar 

  36. Furusawa K, Shou Z, Nagahashi N (1992) Polymer adsorption on fine particles: the effects of particle size and its stability. Colloid Polym Sci 270:212–218

    Article  Google Scholar 

  37. Ozmusul MS, Picu CR, Sternstein SS, Kumar SK (2005) Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules 38:4495–4500

    Article  CAS  Google Scholar 

  38. Sikorski A (2002) Structure of adsorbed polymer chains: a Monte Carlo study. Macromlo Theory Simul 11:359–364

    Article  CAS  Google Scholar 

  39. Liu H, Chakrabarti A (1999) Molecular dynamics study of adsorption and spreading of a polymer chain onto a flat surface. Polymer 40:7285–7293

    Article  CAS  Google Scholar 

  40. Sanchez PA, Cerda JJ, Ballenegger V, Sintes T, Piro O, Holm C (2011) Semiflexible magnetic filaments near attractive flat surfaces: a Langevin dynamics study. Soft Matter 7:1809–1818

    Article  CAS  Google Scholar 

  41. Li H, Gong B, Qian CJ, Luo MB (2015) Critical adsorption of a flexible polymer on a stripe-patterned surface. Soft Matter 11:3222–3231

    Article  CAS  Google Scholar 

  42. Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301

    Article  Google Scholar 

  43. Yang QH, Qian CJ, Li H, Luo MB (2014) Dynamics of a polymer adsorbed to an attractive homogeneous flat surface. Phys Chem Chem Phys 16:23292–23300

    Article  CAS  Google Scholar 

  44. Chang CM, Lau YG, Tsai JC, Juan WT (2012) Relaxation of DNA on a supported lipid membrane. EPL 99:48008–48013

    Article  Google Scholar 

  45. Sumithra K (2009) The influence of adsorbate-surface interaction energy on adsorption and recognition of diblock copolymers on patterned surfaces. J Chem Phys 130:194903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11374255 and 11474222 and the Natural Science Foundation of Zhejiang Province of China under Grant Nos. LY15A040009 and LQ14A040001. Computer simulations were carried out in the High Performance Computing Center of Hangzhou Normal University, College of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Yang Li or Meng-Bo Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Cao, WP., Luo, MB. et al. Adsorption of polymer on an attractive nano-sized particle. Colloid Polym Sci 294, 1001–1009 (2016). https://doi.org/10.1007/s00396-016-3858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3858-y

Keywords

Navigation