Skip to main content
Log in

Free radical copolymerization of methyl methacrylate and N-2-methyl-4-nitro-phenylmaleimide: Improvement in the Tg of PMMA

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this investigation, a series of novel poly(methyl methacrylate-co-N-2-methyl-4-nitrophenylmaleimide) (PMMA-co-MI) copolymers possessing high glass transition temperatures (Tg) and high transparency was prepared through free radical polymerization. The resultant copolymers were characterized by spectroscopic techniques, elemental analysis, X-ray diffraction, and thermal methods. The PMMA-co-MI copolymers demonstrate higher thermal stability as compared to pristine PMMA. The Tg of copolymers is about 40 °C more than for PMMA. The copolymer composition has been determined by elemental analysis and 1H-NMR. The investigated copolymers show excellent solubility in wide range of organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mallakpour S, Barati A (2012) Preparation and characterization of novel optically active poly(vinyl alcohol-co-vinyl ester) in nonaqueous medium using l-phenylalanine as a chiral material. Amino Acids 42(4):1287–1295. doi:10.1007/s00726-010-0823-9

    Article  CAS  Google Scholar 

  2. Tucureanu V, Matei A, Mihalache I, Danila M, Popescu M, Bita B (2015) Synthesis and characterization of YAG:Ce, Gd and YAG:Ce, Gd/PMMA nanocomposites for optoelectronic applications. J Mater Sci 50(4):1883–1890. doi:10.1007/s10853-014-8751-9

    Article  CAS  Google Scholar 

  3. Singh AK, Prakash R, Pandey D (2013) A comparative thermal, optical, morphological and mechanical properties studies of pristine and C15A nanoclay-modified PC/PMMA blends: a critical evaluation of the role of nanoclay particles as compatibilizers. RSC Adv 3(35):15411–15420. doi:10.1039/C3RA40543E

    Article  CAS  Google Scholar 

  4. Schoth A, Wagner C, Hecht L, Winzen S, Muñoz-Espí R, Schuchmann H, Landfester K (2014) Structure control in PMMA/silica hybrid nanoparticles by surface functionalization. Colloid Polym Sci 292(10):2427–2437. doi:10.1007/s00396-014-3316-7

    Article  CAS  Google Scholar 

  5. Gu H, Hou Y, Xu F, Wang S (2015) Electrospinning preparation, thermal, and luminescence properties of Eu2(BTP)3(Phen)2 complex doped in PMMA. Colloid Polym Sci:1–8. doi:10.1007/s00396-015-3614-8

  6. Chau JLH, Hsieh C-C, Lin Y-M, Li A-K (2008) Preparation of transparent silica–PMMA nanocomposite hard coatings. Prog Org Coat 62(4):436–439. doi:10.1016/j.porgcoat.2008.02.005

    Article  CAS  Google Scholar 

  7. Su W, Wang S, Wang X, Fu X, Weng J (2010) Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf Coat Technol 205(2):465–469. doi:10.1016/j.surfcoat.2010.07.013

    Article  CAS  Google Scholar 

  8. Schneider M, Michels R, Pipich V, Goerigk G, Sauer V, Heim HP, Huber K (2013) Morphology of blends with cross-linked PMMA microgels and linear PMMA chains. Macromolecules 46(22):9091–9103. doi:10.1021/ma401889k

    Article  CAS  Google Scholar 

  9. Feng S, Chen Y, Mai B, Wei W, Zheng C, Wu Q, Liang G, Gao H, Zhu F (2014) Glass transition of poly(methyl methacrylate) nanospheres in aqueous dispersion. Phys Chem Chem Phys 16(30):15941–15947. doi:10.1039/C4CP01849D

    Article  CAS  Google Scholar 

  10. Lin C-T, Kuo S-W, Huang C-F, Chang F-C (2010) Glass transition temperature enhancement of PMMA through copolymerization with PMAAM and PTCM mediated by hydrogen bonding. Polymer 51(4):883–889. doi:10.1016/j.polymer.2009.12.039

    Article  CAS  Google Scholar 

  11. Gianotti V, Antonioli D, Sparnacci K, Laus M, Giammaria TJ, Ferrarese Lupi F, Seguini G, Perego M (2013) On the thermal stability of PS-b-PMMA block and P(S-r-MMA) random copolymers for nanopatterning applications. Macromolecules 46(20):8224–8234. doi:10.1021/ma401023y

    Article  CAS  Google Scholar 

  12. Kuo S-W, Xu H, Huang C-F, Chang F-C (2002) Significant glass-transition-temperature increase through hydrogen-bonded copolymers. J Polym Sci Part B: Polym Phys 40(19):2313–2323. doi:10.1002/polb.10292

    Article  CAS  Google Scholar 

  13. Manseri A, David G, Joly-Duhamel C, Boutevin B (2010) Synthesis of glutarimides from PMMA copolymers, part 3: use of functional amines. J Appl Polym Sci 118(4):1867–1871. doi:10.1002/app.32562

    CAS  Google Scholar 

  14. Jagan Mohan D (2013) Synthesis, characterization and swelling properties of copolymers of N(−1,1-dimethyll-3-oxobutyl)acrylamide with methyl methacrylate. Des Monomers Polym 17(5):438–444. doi:10.1080/15685551.2013.867567

    Article  Google Scholar 

  15. Liu W-D, Zhang Y-H, Fang L-F, Zhu B-K, Zhu L-P (2012) Antifouling properties of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chin J Polym Sci 30(4):568–577. doi:10.1007/s10118-012-1153-z

    Article  CAS  Google Scholar 

  16. Hendrana S, Hill DJT, Senake Perera MC, Pomery PJ (2001) Copolymerization of methyl methacrylate and allyl acetate Part I. Rate of reaction. Polym Int 50(5):597–605. doi:10.1002/pi.671

    Article  CAS  Google Scholar 

  17. Teodorescu M (2002) Free-radical copolymerization of methyl methacrylate with styrene in the presence of 2-mercaptoethanol II. Influence of methyl methacrylate/styrene ratio. Eur Polym J 38(5):841–846. doi:10.1016/S0014-3057(01)00251-8

    Article  CAS  Google Scholar 

  18. Koike K, Araki T, Koike Y (2014) Influence of dielectric fluctuation on light-scattering properties of random copolymers in bulk. Polymer 55(11):2697–2703. doi:10.1016/j.polymer.2014.04.009

    Article  CAS  Google Scholar 

  19. Szanka A, Szarka G, Iván B (2013) Multi-methacrylated star-shaped, photocurable poly(methyl methacrylate) macromonomers via quasiliving ATRP with suppressed curing shrinkage. Polymer 54(22):6073–6077. doi:10.1016/j.polymer.2013.09.025

    Article  CAS  Google Scholar 

  20. Bakhshi H, Zohuriaan-Mehr MJ, Bouhendi H, Kabiri K (2009) Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl methacrylate) from emulsion polymerization. Polym Test 28(7):730–736. doi:10.1016/j.polymertesting.2009.06.003

    Article  CAS  Google Scholar 

  21. Licoccia S, Trombetta M, Capitani D, Proietti N, Romagnoli P, Di Vona ML (2005) ATR–FTIR and NMR spectroscopic studies on the structure of polymeric gel electrolytes for biomedical applications. Polymer 46(13):4670–4675. doi:10.1016/j.polymer.2005.03.078

    Article  CAS  Google Scholar 

  22. Zhang F-A, Song C, Yu C-L (2011) Effects of preparation methods on the property of PMMA/SBA-15 mesoporous silica composites. J Polym Res 18(6):1757–1764. doi:10.1007/s10965-011-9582-x

    Article  CAS  Google Scholar 

  23. Nakano T, Mori M, Okamoto Y (1993) Stereospecific radical polymerization of 1-phenyldibenzosuberyl methacrylate affording a highly isotactic polymer. Macromolecules 26(4):867–868. doi:10.1021/ma00056a049

    Article  CAS  Google Scholar 

  24. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL (2003) Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79(2):271–281. doi:10.1016/S0141-3910(02)00291-4

    Article  CAS  Google Scholar 

  25. Holland BJ, Hay JN (2002) The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polym Degrad Stab 77(3):435–439. doi:10.1016/S0141-3910(02)00100-3

    Article  CAS  Google Scholar 

  26. Carvalho HWP, Suzana AF, Santilli CV, Pulcinelli SH (2014) Structure and thermal behavior of PMMA–polysilsesquioxane organic–inorganic hybrids. Polym Degrad Stab 104(0):112–119. doi:10.1016/j.polymdegradstab.2014.03.031

    Article  CAS  Google Scholar 

  27. Kao H-C, Kuo S-W, Chang F-C (2003) Effects of inert diluent segment and hydrogen bonding in poly(styrene-co-methacrylamide) copolymers. J Polym Res 10(2):111–117. doi:10.1023/A:1024978102847

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Malek-ashtar University of Technology (MUT), Shahin-shahr, for partial financial support. We also like to thank Mr. M. salari for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariborz Atabaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atabaki, F., Abdolmaleki, A. & Barati, A. Free radical copolymerization of methyl methacrylate and N-2-methyl-4-nitro-phenylmaleimide: Improvement in the Tg of PMMA. Colloid Polym Sci 294, 455–462 (2016). https://doi.org/10.1007/s00396-015-3799-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3799-x

Keywords

Navigation