Skip to main content
Log in

Investigation of removal of Pb(II) and Hg(II) by a novel cross-linked chitosan-poly(aspartic acid) chelating resin containing disulfide bond

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel cross-linked chitosan-poly(aspartic acid) chelating resin was synthesized by combining chitosan and poly(aspartic acid) derivative with crosslinker. The structure and morphology of the resin containing disulfide bonds were characterized by 1H NMR, FT-IR, Raman spectra, and SEM. Adsorption of Pb(II) and Hg(II) from aqueous solution by the resulted chelating resin was investigated in batch techniques. The result of the Raman spectra suggests that the disulfide bonds in the resin also play an important role in the adsorption of Pb(II) and Hg(II). The kinetic data were fitted to pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, which is suggestive of following closely the pseudo-second-order kinetic model. Equilibrium data were fitted to Langmuir, Freundlich, and D–R isotherm models. The results of equilibrium isotherm reveal that the empirical Langmuir equation provides an accurate description of the experimental data under the studied concentration range. In addition, thermodynamic and regeneration properties of the adsorbent were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93. doi:10.1016/j.carbpol.2003.08.005

    Article  CAS  Google Scholar 

  2. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interf 152:26–38. doi:10.1016/j.cis.2009.09.003

    Article  CAS  Google Scholar 

  3. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. doi:10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  4. Wu F-C, Tseng R-L, Juang R-S (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91:798–806. doi:10.1016/j.jenvman.2009.10.018

    Article  CAS  Google Scholar 

  5. Zhao Y, Tan TW (2006) Poly(aspartic acid) super-absorbent resin produced by chemical crosslinking and physical freeze/thawing. Macromol Chem Phys 207:1297–1305. doi:10.1002/macp.200600168

    Article  CAS  Google Scholar 

  6. Sun B, Mi ZT, Jie OY, An G, Song XK (2005) Pb2+ binding by polyaspartyl polymers and their application to Pb2+ removal from glycyrrhizin. J Appl Polym Sci 97:2215–2220. doi:10.1002/app.21867

    Article  CAS  Google Scholar 

  7. Anbergen U, Opperman W (1990) Elasticity and swelling behaviour of chemically crosslinked cellulose ethers in aqueous systems. Polymer 31:1854–1858. doi:10.1016/0032-3861(90)90006-K

    Article  CAS  Google Scholar 

  8. Wan Ngah WS, Fatinathan S (2010) Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci 22:338–346. doi:10.1016/S1001-0742(09)60113-3

    Article  Google Scholar 

  9. Sun B, Mi ZT, An G, Liu GZ, Zou JJ (2009) Preparation of biomimetic materials made from polyaspartyl polymer and chitosan for heavy-metal removal. Ind Eng Chem Res 48:9823–9829. doi:10.1021/ie900673h

    Article  CAS  Google Scholar 

  10. Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131. doi:10.1016/j.tifs.2006.10.022

    Article  Google Scholar 

  11. Behpour M, Ghoreishi SM, Mohammadi N, Soltani N, Salavati-Niasari M (2010) Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corros Sci 52:4046–4057. doi:10.1016/j.corsci.2010.08.020

    Article  CAS  Google Scholar 

  12. Morad MS, Kamal El-Dean AM (2006) 2,2'-Dithiobis(3-cyano-4,6-dimethylpyridine): a new class of acid corrosion inhibitors for mild steel. Corros Sci 48:3398–3412. doi:10.1016/j.corsci.2005.12.006

    Article  CAS  Google Scholar 

  13. Chen S, Yue Q, Gao B, Li Q, Xu X (2011) Removal of Cr(VI) from aqueous solution using modified corn stalks: characteristic, equilibrium, kinetic and thermodynamic study. Chem Eng J 168:909–917. doi:10.1016/j.cej.2011.01.063

    Article  CAS  Google Scholar 

  14. Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23. doi:10.1016/j.jhazmat.2009.01.060

    Article  CAS  Google Scholar 

  15. Cao H, Ma X, Sun S, Su H, Tan T (2010) A new photocrosslinkable hydrogel based on a derivative of polyaspartic acid for the controlled release of ketoprofen. Polym Bull 64:623–632. doi:10.1007/s00289-009-0215-z

    Article  CAS  Google Scholar 

  16. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. doi:10.1016/j.cej.2010.04.030

    Article  CAS  Google Scholar 

  17. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645. doi:10.1016/j.jhazmat.2008.06.042

    Article  CAS  Google Scholar 

  18. Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154:337–346. doi:10.1016/j.jhazmat.2007.10.031

    Article  CAS  Google Scholar 

  19. Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002. doi:10.1016/j.jhazmat.2008.04.078

    Article  CAS  Google Scholar 

  20. Tarley CRT, Andrade FN, Santana H, Zaia DAM, Beijo LA, Segatelli MG (2012) Ion-imprinted polyvinylimidazole-silica hybrid copolymer for selective extraction of Pb(II): characterization and metal adsorption kinetic and thermodynamic studies. React Funct Polym 72:83–91. doi:10.1016/j.reactfunctpolym.2011.10.008

    Article  CAS  Google Scholar 

  21. Bhattacharyya KG, Gupta SS (2007) Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: influence of acid activation. J Colloid Interf Sci 310:411–424. doi:10.1016/j.jcis.2007.01.080

    Article  CAS  Google Scholar 

  22. Chen CY, Chiang CL, Chen CR (2007) Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep Purif Technol 54:396–403. doi:10.1016/j.seppur.2006.10.020

    Article  CAS  Google Scholar 

  23. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970. doi:10.1016/j.jhazmat.2010.01.012

    Article  CAS  Google Scholar 

  24. Li ZT, Guo J, Zhang JS, Zhao YP, Lv L, Ding C, Zhang XZ (2010) Chitosan-graft-polyethylenimine with improved properties as a potential gene vector. Carbohydr Polym 80:254–259. doi:10.1016/j.carbpol.2009.11.021

    Article  CAS  Google Scholar 

  25. Guinesi LS, Cavalheiro ÉTG (2006) Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde. Carbohydr Polym 65:557–561. doi:10.1016/j.carbpol.2006.01.030

    Article  CAS  Google Scholar 

  26. Xiao Y, Zhou XH (2008) Synthesis and properties of a novel cross-linked chitosan resin modified by l-lysine. React Funct Polym 68:1281–1289. doi:10.1016/j.reactfunctpolym.2008.06.015

    Article  CAS  Google Scholar 

  27. Wang S, Yu D (2010) Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres. J Appl Polym Sci 118:733–739. doi:10.1002/app.32496

    CAS  Google Scholar 

  28. Monier M (2012) Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff’s base. Int J Biol Macromol 50:773–781. doi:10.1016/j.ijbiomac.2011.11.026

    Article  CAS  Google Scholar 

  29. Shafaei A, Ashtiani FZ, Kaghazchi T (2007) Equilibrium studies of the sorption of Hg(II) ions onto chitosan. Chem Eng J 133:311–316. doi:10.1016/j.cej.2007.02.016

    Article  CAS  Google Scholar 

  30. Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8. doi:10.1021/la802754t

    Article  CAS  Google Scholar 

  31. Wang L, Xing R, Liu S, Cai S, Yu H, Feng J, Li R, Li P (2010) Synthesis and evaluation of a thiourea-modified chitosan derivative applied for adsorption of Hg(II) from synthetic wastewater. Int J Biol Macromol 46:524–528. doi:10.1016/j.ijbiomac.2010.03.003

    Article  CAS  Google Scholar 

  32. Vieira RS, Guibal E, Silva EA, Beppu MM (2007) Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption 13:603–611. doi:10.1007/s10450-007-9050-4

    Article  CAS  Google Scholar 

  33. Gohari M, Hosseini SN, Sharifnia S, Khatami M (2013) Enhancement of metal ion adsorption capacity of Saccharomyces cerevisiae’s cells by using disruption method. J Taiwan Inst Chem Eng. doi:10.1016/j.jtice.2013.01.002

    Google Scholar 

  34. Ma F, Qu R, Sun C, Wang C, Ji C, Zhang Y, Yin P (2009) Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. J Hazard Mater 172:792–801. doi:10.1016/j.jhazmat.2009.07.066

    Article  CAS  Google Scholar 

  35. Niu L, Deng SB, Yu G, Huang J (2010) Efficient removal of Cu(II), Pb(II), Cr(VI) and As(V) from aqueous solution using an aminated resin prepared by surface-initiated atom transfer radical polymerization. Chem Eng J 165:751–757. doi:10.1016/j.cej.2010.08.053

    Article  CAS  Google Scholar 

  36. Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    Article  CAS  Google Scholar 

  37. Wan Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91:958–969. doi:10.1016/j.jenvman.2009.12.003

    Article  Google Scholar 

  38. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the cross-linked chitosan with epichlorohydrin. J Hazard Mater 154:184–191. doi:10.1016/j.jhazmat.2007.10.009

    Article  CAS  Google Scholar 

  39. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci 276:47–52. doi:10.1016/j.jcis.2004.03.048

    Article  CAS  Google Scholar 

  40. Aksu Z, Tatlı Aİ, Tunç Ö (2008) A comparative adsorption/biosorption study of Acid Blue 161: effect of temperature on equilibrium and kinetic parameters. Chem Eng J 142:23–39. doi:10.1016/j.cej.2007.11.005

    Article  CAS  Google Scholar 

  41. Li XL, Yang LQ, Li YF, Ye ZF, He AX (2012) Efficient removal of Cd2+ from aqueous solutions by adsorption on PS-EDTA resins: equilibrium, isotherms and kinetic studies. J Environ Eng-ASCE 138:940–948. doi:10.1061/(ASCE)EE1943-7870.0000553

    Article  CAS  Google Scholar 

  42. Choy KKH, Porter JF, McKay G (2004) Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chem Eng J 103:133–145. doi:10.1016/j.cej.2004.05.012

    Article  CAS  Google Scholar 

  43. Özacar M, Şengil İA, Türkmenler H (2008) Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem Eng J 143:32–42. doi:10.1016/j.cej.2007.12.005

    Article  Google Scholar 

  44. Krishnapriya KR, Kandaswamy M (2010) A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. Carbohydr Res 345:2013–2022. doi:10.1016/j.carres.2010.06.005

    Article  CAS  Google Scholar 

  45. Krishnapriya KR, Kandaswamy M (2009) Synthesis and characterization of a crosslinked chitosan derivative with a complexing agent and its adsorption studies toward metal(II) ions. Carbohydr Res 344:1632–1638. doi:10.1016/j.carres.2009.05.025

    Article  CAS  Google Scholar 

  46. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB (2011) Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination 275:187–196. doi:10.1016/j.desal.2011.02.056

    Article  CAS  Google Scholar 

  47. Repo E, Warchoł JK, Bhatnagar A, Sillanpää M (2011) Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J Colloid Interf Sci 358:261–267. doi:10.1016/j.jcis.2011.02.059

    Article  CAS  Google Scholar 

  48. Yan WL, Bai R (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res 39:688–698. doi:10.1016/j.watres.2004.11.007

    Article  CAS  Google Scholar 

  49. Wan M-W, Kan C-C, Rogel BD, Dalida MLP (2010) Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80:891–899. doi:10.1016/j.carbpol.2009.12.048

    Article  CAS  Google Scholar 

  50. Futalan CM, Kan C-C, Dalida ML, Hsien K-J, Pascua C, Wan M-W (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536. doi:10.1016/j.carbpol.2010.08.013

    Article  CAS  Google Scholar 

  51. Laus R, Costa TG, Szpoganicz B, Fávere VT (2010) Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J Hazard Mater 183:233–241. doi:10.1016/j.jhazmat.2010.07.016

    Article  CAS  Google Scholar 

  52. Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221–222:155–161. doi:10.1016/j.jhazmat.2012.04.026

    Article  Google Scholar 

  53. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloid Surf B 103:523–529. doi:10.1016/j.colsurfb.2012.11.006

    Article  CAS  Google Scholar 

  54. Chauhan D, Sankararamakrishnan N (2008) Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate. Bioresour Technol 99:9021–9024. doi:10.1016/j.biortech.2008.04.024

    Article  CAS  Google Scholar 

  55. He YQ, Zhang NN, Wang XD (2011) Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin Chem Lett 22:859–862. doi:10.1016/j.cclet.2010.12.049

    Article  CAS  Google Scholar 

  56. Li X, Li Y, Ye Z (2011) Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chem Eng J 178:60–68. doi:10.1016/j.cej.2011.10.012

    Article  CAS  Google Scholar 

  57. Dongre R, Thakur M, Ghugal D, Meshram J (2012) Bromine pretreated chitosan for adsorption of lead (II) from water. B Mater Sci 35:875–884. doi:10.1007/s12034-012-0359-6

    Article  CAS  Google Scholar 

  58. Wang R-M, Xie X, Wang J-Q, Pan S-J, Wang Y-P, Xia C-G (2004) Preparation and adsorption properties of modified chitosan. Polym Adv Technol 15:52–54. doi:10.1002/pat.450

    Article  CAS  Google Scholar 

  59. Tang X, Zhang X, Guo C, Zhou A (2007) Adsorption of Pb2+ on chitosan cross-linked with triethylene-tetramine. Chem Eng Technol 30:955–961. doi:10.1002/ceat.200600379

    Article  CAS  Google Scholar 

  60. Ge H, Fan X (2011) Adsorption of Pb2+ and Cd2+ onto a novel activated carbon-chitosan complex. Chem Eng Technol 34:1745–1752. doi:10.1002/ceat.201000182

    Article  CAS  Google Scholar 

  61. Saiano F, Ciofalo M, Cacciola SO, Ramirez S (2005) Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. Water Res 39:2273–2280. doi:10.1016/j.watres.2005.04.022

    Article  CAS  Google Scholar 

  62. Yang Z, Shu J, Zhang L, Wang Y (2006) Preparation and adsorption behavior for metal ions of cyclic polyamine derivative of chitosan. J Appl Polym Sci 100:3018–3023. doi:10.1002/app.23690

    Article  CAS  Google Scholar 

  63. Paulino AT, Santos LB, Nozaki J (2008) Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low-cost adsorbent. React Funct Polym 68:634–642. doi:10.1016/j.reactfunctpolym.2007.10.028

    Article  CAS  Google Scholar 

  64. Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519. doi:10.1002/app.30843

    Article  CAS  Google Scholar 

  65. Zhang G, Qu R, Sun C, Ji C, Chen H, Wang C, Niu Y (2008) Adsorption for metal ions of chitosan coated cotton fiber. J Appl Polym Sci 110:2321–2327. doi:10.1002/app.27515

    Article  CAS  Google Scholar 

  66. Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan(Chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J 55:2062–2069. doi:10.1002/aic.11797

    Article  CAS  Google Scholar 

  67. Tran HV, Tran LD, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng C 30:304–310. doi:10.1016/j.msec.2009.11.008

    Article  CAS  Google Scholar 

  68. Paulino AT, Guilherme MR, Reis AV, Tambourgi EB, Nozaki J, Muniz EC (2007) Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation. J Hazard Mater 147:139–147. doi:10.1016/j.jhazmat.2006.12.059

    Article  CAS  Google Scholar 

  69. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO2 2+, and Th4+. J Hazard Mater 151:380–388. doi:10.1016/j.jhazmat.2007.05.084

    Article  CAS  Google Scholar 

  70. Zhou L, Liu Z, Liu J, Huang Q (2010) Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination 258:41–47. doi:10.1016/j.desal.2010.03.051

    Article  CAS  Google Scholar 

  71. Jeon C, Park KH (2005) Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Res 39:3938–3944. doi:10.1016/j.watres.2005.07.020

    Article  CAS  Google Scholar 

  72. Vieira RS, Beppu MM (2006) Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Res 40:1726–1734. doi:10.1016/j.watres.2006.02.027

    Article  CAS  Google Scholar 

  73. Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater 209–210:240–249. doi:10.1016/j.jhazmat.2012.01.015

    Article  Google Scholar 

  74. Qu R, Sun C, Ma F, Zhang Y, Ji C, Xu Q, Wang C, Chen H (2009) Removal and recovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers. J Hazard Mater 167:717–727. doi:10.1016/j.jhazmat.2009.01.043

    Article  CAS  Google Scholar 

  75. Atia AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22. doi:10.1016/j.hydromet.2005.03.009

    Article  CAS  Google Scholar 

  76. Jeon C, Holl WH (2003) Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res 37:4770–4780. doi:10.1016/S0043-1354(03)00431-7

    Article  CAS  Google Scholar 

  77. Donia AM, Atia AA, Elwakeel KZ (2008) Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff’s base derived from thiourea and glutaraldehyde. J Hazard Mater 151:372–379. doi:10.1016/j.jhazmat.2007.05.083

    Article  CAS  Google Scholar 

  78. Vieira RS, Beppu MM (2006) Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloid Surf A 279:196–207. doi:10.1016/j.colsurfa.2006.01.026

    Article  CAS  Google Scholar 

  79. Lasheen MR, Ammar NS, Ibrahim HS (2012) Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci 14:202–210. doi:10.1016/j.solidstatesciences.2011.11.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to appreciate for the financial supports from the Central Universities Foundation of Harbin Engineering University, China (HEUCFT1009, HEUCF20130910004, HEUCF201403008) and the National Science Foundation of China (21204014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Juan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X.J., Cai, J.C., Zhang, Z.H. et al. Investigation of removal of Pb(II) and Hg(II) by a novel cross-linked chitosan-poly(aspartic acid) chelating resin containing disulfide bond. Colloid Polym Sci 292, 2157–2172 (2014). https://doi.org/10.1007/s00396-014-3240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3240-x

Keywords

Navigation