Skip to main content
Log in

Chitosan Functionalization with Amino Acids Yields to Higher Copper Ions Adsorption Capacity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan (Chi) beads were conjugated with three different amino acids [namely, glutamic acid (GLU), methionine (MET), and taurine (TAU)] aiming to increase the divalent copper ions uptake in aqueous media. Scanning Electron Microscopy evidenced the development of a large porous structure after amino acid functionalization, associated with the increase in a number of amino groups in the polymer backbone. X-Ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectra analyses were also employed to assess the conjugation of these three different amino acids in chitosan backbone. Adsorption experiments were conducted in a batch process, at 298 K, and kinetic data indicated a slightly better fitting for the pseudo-first-order model when compared to pseudo-second order. Intraparticle diffusion model suggested a three-step mechanism for Cu(II) adsorption kinetics, limited by the third step, the intraparticle diffusion. The isotherm data fitting to the traditional Langmuir and Freundlich models indicated a better fit for the former case. The amino acid conjugation resulted in the increase of the maximum adsorption capacity for Cu(II) from 1.30 mmol g−1 prior to amino acid conjugation to values as high as 2.31 mmol g−1, 2.40 mmol g−1 and 2.68 mmol g−1 for Chi–TAU, Chi–GLU, and Chi–MET, respectively. These results are attributed to the introduction of additional amino groups and new carboxylate and amino acid residues into the chitosan backbone, which might also be explored for amino acid demanding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  2. Li J, Tong J, Li X, Yang Z, Zhang Y, Diao G (2016) Facile microfluidic synthesis of copolymer hydrogel beads for the removal of heavy metal ions. J Mater Sci 51(23):10375–10385

    Article  CAS  Google Scholar 

  3. USEPA (United Station Environmental Protection Agency) (2010) Lead and copper rule monitoring and reporting guidance for public water systems (EPA-816-R-02-009). Ground Water and Drinking Water Division, Water Programs, Washington, DC

    Google Scholar 

  4. Chen Q, Luo Z, Hills C, Xue G, Tyrer M (2009) Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res 43(10):2605–2614

    Article  CAS  Google Scholar 

  5. Samper E, Rodríguez M, De la Rubia M, Prats D (2009) Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 65(3):337–342

    Article  CAS  Google Scholar 

  6. Khelifa A, Moulay S, Naceur A (2005) Treatment of metal finishing effluents by the electroflotation technique. Desalination 181(1–3):27–33

    Article  CAS  Google Scholar 

  7. Chang Q, Wang G (2007) Study on the macromolecular coagulant PEX which traps heavy metals. Chem Eng Sci 62(17):4636–4643

    Article  CAS  Google Scholar 

  8. Rabelo R, Vieira R, Luna F, Guibal E, Beppu M (2012) Adsorption of copper (II) and mercury (II) ions onto chemically-modified chitosan membranes: equilibrium and kinetic properties. Adsorpt Sci Technol 30(1):1–21

    Article  CAS  Google Scholar 

  9. Yu Y, Peng R, Yang C, Tang Y (2015) Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation. J Mater Sci 50(17):5799–5808

    Article  CAS  Google Scholar 

  10. Albarelli JQ, Rabelo RB, Santos DT, Beppu MM, Meireles MAA (2011) Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. J Supercrit Fluids 58(3):343–351

    Article  CAS  Google Scholar 

  11. Oliveira LS, Franca AS, Alves TM, Rocha SD (2008) Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J Hazard Mater 155(3):507–512

    Article  CAS  Google Scholar 

  12. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  13. Deans JR, Dixon BG (1992) Uptake of Pb2 + and Cu2 + by novel biopolymers. Water Res 26(4):469–472

    Article  CAS  Google Scholar 

  14. Vieira RS, Lisa M, Oliveira M, Guibal E, Rodríguez-castellón E, Beppu MM (2011) Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf A 374(1–3):108–114

    Article  CAS  Google Scholar 

  15. Steenkamp G, Keizer K, Neomagus H, Krieg H (2002) Copper (II) removal from polluted water with alumina/chitosan composite membranes. J Membr Sci 197(1):147–156

    Article  CAS  Google Scholar 

  16. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  CAS  Google Scholar 

  17. Beppu MM, Vieira RS, Aimoli CG, Santana CC (2007) Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci 301(1–2):126–130

    Article  CAS  Google Scholar 

  18. Fu H, Kobayashi T (2010) Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal. J Mater Sci 45(24):6694–6700

    Article  CAS  Google Scholar 

  19. Boggione MaJ, Mahl CRA, Beppu MM, Farruggia B (2017) Synthesis and characterization of chitosan membranes functionalized with amino acids and copper for adsorption of endoglucanase. Powder Technol 315:250–257

    Article  CAS  Google Scholar 

  20. Demir AG, Taketa TB, Tolouei R, Furlan V, Paternoster C, Beppu MM, Mantovani D, Previtali B (2015) Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Mater Lett 160:359–362

    Article  CAS  Google Scholar 

  21. Vasconcellos FC, Goulart GAS, Beppu MM (2011) Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol 205(1–3):65–70

    Article  CAS  Google Scholar 

  22. Vieira RS, Beppu MM (2005) Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption 11:731–736

    Article  Google Scholar 

  23. Oshita K, Sabarudin A, Takayanagi T, Oshima M, Motomizu S (2009) Adsorption behavior of uranium (VI) and other ionic species on cross-linked chitosan resins modified with chelating moieties. Talanta 79(4):1031–1035

    Article  CAS  Google Scholar 

  24. Inoue K, Yoshizuka K, Ohto K (1999) Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 388(1):209–218

    Article  CAS  Google Scholar 

  25. Casettari L, Vllasaliu D, Lam JKW, Soliman M, Illum L (2012) Biomedical applications of amino acid-modi fi ed chitosans: a review. Biomaterials 33(30):7565–7583

    Article  CAS  Google Scholar 

  26. Sano T, Murase I (1980) US Patent 4,200,735. U.S. Patent and Trademark Office, Washington, DC

  27. Adhikari CR, Parajuli D, Inoue K, Ohto K, Kawakita H (2008) Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel. Chemosphere 72(2):182–188

    Article  CAS  Google Scholar 

  28. Li N, Bai R (2005) Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42(3):237–247

    Article  CAS  Google Scholar 

  29. Ngah WSW, Fatinathan S (2008) Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J 143(1–3):62–72

    Article  CAS  Google Scholar 

  30. Zhao F, Yu B, Yue Z, Wang T, Wen X, Liu Z, Zhao C (2007) Preparation of porous chitosan gel beads for copper(II) ion adsorption. J Hazard Mater 147(1–2):67–73

    Article  CAS  Google Scholar 

  31. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  32. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  33. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    Article  CAS  Google Scholar 

  34. Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM (2006) Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res 40(14):2645–2658

    Article  CAS  Google Scholar 

  35. Monteiro OA, Airoldi C (1999) Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26(2):119–128

    Article  CAS  Google Scholar 

  36. Kurita K, Koyama Y, Taniguchi A (1986) Studies on chitin. IX. Crosslinking of water-soluble chitin and evaluation of the products as adsorbents for cupric ion. J Appl Polym Sci 31(5):1169–1176

    Article  CAS  Google Scholar 

  37. Wan Ngah WS, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50(2):181–190

    Article  Google Scholar 

  38. Wan Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34(3):155–161

    Article  CAS  Google Scholar 

  39. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  40. Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  41. Lagergren SY (1898) Zur Theorie der sogenannten adsorption gelöster stoffe. Handlingar, Stockholm

    Google Scholar 

  42. Baroni P, Vieira RS, Meneghetti E, da Silva MGC, Beppu MM (2008) Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J Hazard Mater 152(3):1155–1163

    Article  CAS  Google Scholar 

  43. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu + 2 and Cd + 2 from dilute aqueous metal solutions. Desalination 224(1–3):293–306

    Article  CAS  Google Scholar 

  44. Ho YS, Wase DAJ, Forster CF (1995) Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res 29(5):1327–1332

    Article  CAS  Google Scholar 

  45. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div 89:31–60

    Google Scholar 

  46. Lee ST, Mi FL, Shen YJ, Shyu SS (2001) Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer 42(5):1879–1892

    Article  CAS  Google Scholar 

  47. Findon A, McKay G, Blair HS (1993) Transport studies for the sorption of copper ions by chitosan. J Environ Sci Health A 28:173–185

    Google Scholar 

  48. Popuri SR, Vijaya Y, Boddu VM, Abburi K (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100(1):194–199

    Article  CAS  Google Scholar 

  49. Beppu M, Arruda E, Vieira R, Santos N (2004) Adsorption of Cu (II) on porous chitosan membranes functionalized with histidine. J Membr Sci 240(1):227–235

    Article  CAS  Google Scholar 

  50. Piron E, Domard A (1997) Interaction between chitosan and uranyl ions. Part 1. Role of physicochemical parameters. Int J Biol Macromol 21(4):327–335

    Article  CAS  Google Scholar 

  51. Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(1–2):153–166

    Article  CAS  Google Scholar 

  52. Ritthidej GC, Phaechamud T, Koizumi T (2002) Moist heat treatment on physicochemical change of chitosan salt films. Int J Pharm 232(1–2):11–22

    Article  CAS  Google Scholar 

  53. Mary MB, Umadevi M, Pandiarajan S, Ramakrishnan V (2004) Vibrational spectral studies of l-methionine l-methioninium perchlorate monohydrate. Spectrochim Acta A 60(11):2643–2651

    Article  Google Scholar 

  54. Triebel S, Sproll C, Reusch H, Godelmann R, Lachenmeier DW (2007) Rapid analysis of taurine in energy drinks using amino acid analyzer and Fourier transform infrared (FTIR) spectroscopy as basis for toxicological evaluation. Amino Acids 33(3):451–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Brazilian governmental agencies Coordination for the Improvement of Higher Education Personnel (CAPES: Procad 88882.151600/2017-01 and PNPD/FEQ), National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP) (Grants Nos. 2013/05135-1 and 2016/10193-9). We also thank the Massachusetts Institute of Technology (MIT) Center for Materials Science and Engineering (CMSE), and Elisabeth Shaw for supporting the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago B. Taketa.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1177 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahl, C.R.A., Taketa, T.B., Bataglioli, R.A. et al. Chitosan Functionalization with Amino Acids Yields to Higher Copper Ions Adsorption Capacity. J Polym Environ 26, 4338–4349 (2018). https://doi.org/10.1007/s10924-018-1306-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1306-4

Keywords

Navigation