Skip to main content

Advertisement

Log in

Deletion of obscurin immunoglobulin domains Ig58/59 leads to age-dependent cardiac remodeling and arrhythmia

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Obscurin comprises a family of giant modular proteins that play key structural and regulatory roles in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin mediate binding to essential modulators of muscle structure and function, including canonical titin, a smaller splice variant of titin, termed novex-3, and phospholamban (PLN). Importantly, missense mutations localized within the obscurin-Ig58/59 region that affect binding to titins and/or PLN have been linked to the development of myopathy in humans. To elucidate the pathophysiological role of this region, we generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and determined the consequences of this manipulation on cardiac morphology and function under conditions of acute stress and through the physiological process of aging. Our studies show that young Obscn-ΔIg58/59 mice are susceptible to acute β-adrenergic stress. Moreover, sedentary Obscn-ΔIg58/59 mice develop left ventricular hypertrophy that progresses to dilation, contractile impairment, atrial enlargement, and arrhythmia as a function of aging with males being more affected than females. Experiments in ventricular cardiomyocytes revealed altered Ca2+ cycling associated with changes in the expression and/or phosphorylation levels of major Ca2+ cycling proteins, including PLN, SERCA2, and RyR2. Taken together, our work demonstrates that obscurin-Ig58/59 is an essential regulatory module in the heart and its deletion leads to age- and sex-dependent cardiac remodeling, ventricular dilation, and arrhythmia due to deregulated Ca2+ cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackermann MA, Shriver M, Perry NA, Hu LY, Kontrogianni-Konstantopoulos A (2014) Obscurins: goliaths and Davids take over non-muscle tissues. PLoS ONE 9:e88162. https://doi.org/10.1371/journal.pone.0088162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akaike T, Du N, Lu G, Minamisawa S, Wang Y, Ruan H (2017) A sarcoplasmic reticulum localized protein phosphatase regulates phospholamban phosphorylation and promotes ischemia reperfusion injury in the heart. JACC Basic Transl Sci 2:160–180. https://doi.org/10.1016/j.jacbts.2016.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arimura T, Matsumoto Y, Okazaki O, Hayashi T, Takahashi M, Inagaki N, Hinohara K, Ashizawa N, Yano K, Kimura A (2007) Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem Biophys Res Commun 362:281–287. https://doi.org/10.1016/j.bbrc.2007.07.183

    Article  CAS  PubMed  Google Scholar 

  4. Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072. https://doi.org/10.1161/hh2301.100981

    Article  CAS  PubMed  Google Scholar 

  5. Beckendorf J, van den Hoogenhof MMG, Backs J (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113:29. https://doi.org/10.1007/s00395-018-0688-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA (2016) The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ Res 118:1294–1312. https://doi.org/10.1161/CIRCRESAHA.116.307509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blondelle J, Marrocco V, Clark M, Desmond P, Myers S, Nguyen J, Wright M, Bremner S, Pierantozzi E, Ward S, Esteve E, Sorrentino V, Ghassemian M, Lange S (2019) Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Commun Biol 2:178. https://doi.org/10.1038/s42003-019-0405-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borisov AB, Raeker MO, Kontrogianni-Konstantopoulos A, Yang K, Kurnit DM, Bloch RJ, Russell MW (2003) Rapid response of cardiac obscurin gene cluster to aortic stenosis: differential activation of Rho-GEF and MLCK and involvement in hypertrophic growth. Biochem Biophys Res Commun 310:910–918. https://doi.org/10.1016/j.bbrc.2003.09.035

    Article  CAS  PubMed  Google Scholar 

  9. Busby B, Willis CD, Ackermann MA, Kontrogianni-Konstantopoulos A, Bloch RJ (2010) Characterization and comparison of two binding sites on obscurin for small ankyrin 1. Biochemistry 49:9948–9956. https://doi.org/10.1021/bi101165p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E, Leo-Macias A, Alvarado FJ, Dolgalev I, Karathanos TV, Malkani K, Van Opbergen CJM, van Bavel JJA, Yang HQ, Vasquez C, Tester D, Fowler S, Liang F, Rothenberg E, Heguy A, Morley GE, Coetzee WA, Trayanova NA, Ackerman MJ, van Veen TAB, Valdivia HH, Delmar M (2017) Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun 8:106. https://doi.org/10.1038/s41467-017-00127-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeGrande ST, Little SC, Nixon DJ, Wright P, Snyder J, Dun W, Murphy N, Kilic A, Higgins R, Binkley PF, Boyden PA, Carnes CA, Anderson ME, Hund TJ, Mohler PJ (2013) Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem 288:1032–1046. https://doi.org/10.1074/jbc.M112.426957

    Article  CAS  PubMed  Google Scholar 

  12. Disertori M, Mase M, Ravelli F (2017) Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc Med 27:363–372. https://doi.org/10.1016/j.tcm.2017.01.011

    Article  PubMed  Google Scholar 

  13. Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 114:1311–1319. https://doi.org/10.1161/circresaha.114.300568(discussion 1319)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eiringhaus J, Herting J, Schatter F, Nikolaev VO, Sprenger J, Wang Y, Kohn M, Zabel M, El-Armouche A, Hasenfuss G, Sossalla S, Fischer TH (2019) Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling. Basic Res Cardiol 114:13. https://doi.org/10.1007/s00395-019-0720-7

    Article  CAS  PubMed  Google Scholar 

  15. Erickson JR (2014) Mechanisms of CaMKII Activation in the Heart. Front Pharmacol 5:59. https://doi.org/10.3389/fphar.2014.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng Y, Cheng J, Wei B, Wang Y (2017) CaMKII inhibition reduces isoproterenol-induced ischemia and arrhythmias in hypertrophic mice. Oncotarget 8:17504–17509. https://doi.org/10.18632/oncotarget.15099

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fukuzawa A, Idowu S, Gautel M (2005) Complete human gene structure of obscurin: implications for isoform generation by differential splicing. J Muscle Res Cell Motil 26:427–434. https://doi.org/10.1007/s10974-005-9025-6

    Article  CAS  PubMed  Google Scholar 

  18. Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 462:119–134. https://doi.org/10.1007/s00424-011-0946-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grogan A, Kontrogianni-Konstantopoulos A (2019) Unraveling obscurins in heart disease. Pflugers Arch 471:735–743. https://doi.org/10.1007/s00424-018-2191-3

    Article  CAS  PubMed  Google Scholar 

  20. Heijman J, Dewenter M, El-Armouche A, Dobrev D (2013) Function and regulation of serine/threonine phosphatases in the healthy and diseased heart. J Mol Cell Cardiol 64:90–98. https://doi.org/10.1016/j.yjmcc.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  21. Hu LR, Ackermann MA, Hecker PA, Prosser BL, King B, O’Connell KA, Grogan A, Meyer LC, Berndsen CE, Wright NT, Jonathan Lederer W, Kontrogianni-Konstantopoulos A (2017) Deregulated Ca(2+) cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 3:e1603081. https://doi.org/10.1126/sciadv.1603081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu LY, Kontrogianni-Konstantopoulos A (2013) The kinase domains of obscurin interact with intercellular adhesion proteins. FASEB J 27:2001–2012. https://doi.org/10.1096/fj.12-221317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huke S, Bers DM (2008) Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 376:80–85. https://doi.org/10.1016/j.bbrc.2008.08.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kellermayer D, Smith JE 3rd, Granzier H (2017) Novex-3, the tiny titin of muscle. Biophys Rev 9:201–206. https://doi.org/10.1007/s12551-017-0261-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89:1217–1267. https://doi.org/10.1152/physrev.00017.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Bloch RJ (2006) De novo myofibrillogenesis in C2C12 cells: evidence for the independent assembly of M bands and Z disks. Am J Physiol Cell Physiol 290:C626–C637. https://doi.org/10.1152/ajpcell.00442.2005

    Article  CAS  PubMed  Google Scholar 

  27. Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW, Russell MW, Bloch RJ (2006) Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J 20:2102–2111. https://doi.org/10.1096/fj.06-5761com

    Article  CAS  PubMed  Google Scholar 

  28. Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol Biol Cell 14:1138–1148. https://doi.org/10.1091/mbc.e02-07-0411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lange S, Ouyang K, Meyer G, Cui L, Cheng H, Lieber RL, Chen J (2009) Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J Cell Sci 122:2640–2650. https://doi.org/10.1242/jcs.046193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linke WA (2018) Titin Gene and protein functions in passive and active muscle. Annu Rev Physiol 80:389–411. https://doi.org/10.1146/annurev-physiol-021317-121234

    Article  CAS  PubMed  Google Scholar 

  31. Linke WA, Hamdani N (2014) Gigantic business: titin properties and function through thick and thin. Circ Res 114:1052–1068. https://doi.org/10.1161/CIRCRESAHA.114.301286

    Article  CAS  PubMed  Google Scholar 

  32. Louzao-Martinez L, Vink A, Harakalova M, Asselbergs FW, Verhaar MC, Cheng C (2016) Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int J Cardiol 220:634–646. https://doi.org/10.1016/j.ijcard.2016.06.253

    Article  PubMed  Google Scholar 

  33. MacDougall LK, Jones LR, Cohen P (1991) Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur J Biochem 196:725–734. https://doi.org/10.1111/j.1432-1033.1991.tb15871.x

    Article  CAS  PubMed  Google Scholar 

  34. Mishra S, Sabbah HN, Jain JC, Gupta RC (2003) Reduced Ca2+-calmodulin-dependent protein kinase activity and expression in LV myocardium of dogs with heart failure. Am J Physiol Heart Circ Physiol 284:H876–H883. https://doi.org/10.1152/ajpheart.00266.2002

    Article  CAS  PubMed  Google Scholar 

  35. Murphy E, Steenbergen C (2014) Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 5:6. https://doi.org/10.1186/2042-6410-5-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Netticadan T, Temsah RM, Kawabata K, Dhalla NS (2000) Sarcoplasmic reticulum Ca(2+)/Calmodulin-dependent protein kinase is altered in heart failure. Circ Res 86:596–605. https://doi.org/10.1161/01.res.86.5.596

    Article  CAS  PubMed  Google Scholar 

  37. Neumann J, Eschenhagen T, Jones LR, Linck B, Schmitz W, Scholz H, Zimmermann N (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29:265–272. https://doi.org/10.1006/jmcc.1996.0271

    Article  CAS  PubMed  Google Scholar 

  38. Qadota H, Matsunaga Y, Bagchi P, Lange KI, Carrier KJ, Pols WV, Swartzbaugh E, Wilson KJ, Srayko M, Pallas DC, Benian GM (2018) Protein phosphatase 2A is crucial for sarcomere organization in Caenorhabditis elegans striated muscle. Mol Biol Cell 29:2084–2097. https://doi.org/10.1091/mbc.E18-03-0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qadota H, McGaha LA, Mercer KB, Stark TJ, Ferrara TM, Benian GM (2008) A novel protein phosphatase is a binding partner for the protein kinase domains of UNC-89 (Obscurin) in Caenorhabditis elegans. Mol Biol Cell 19:2424–2432. https://doi.org/10.1091/mbc.E08-01-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raeker MO, Su F, Geisler SB, Borisov AB, Kontrogianni-Konstantopoulos A, Lyons SE, Russell MW (2006) Obscurin is required for the lateral alignment of striated myofibrils in zebrafish. Dev Dyn 235:2018–2029. https://doi.org/10.1002/dvdy.20812

    Article  CAS  PubMed  Google Scholar 

  41. Rossi D, Palmio J, Evila A, Galli L, Barone V, Caldwell TA, Policke RA, Aldkheil E, Berndsen CE, Wright NT, Malfatti E, Brochier G, Pierantozzi E, Jordanova A, Guergueltcheva V, Romero NB, Hackman P, Eymard B, Udd B, Sorrentino V (2017) A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS ONE 12:e0186642. https://doi.org/10.1371/journal.pone.0186642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ (2002) Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 282:237–246. https://doi.org/10.1016/s0378-1119(01)00795-8

    Article  CAS  PubMed  Google Scholar 

  43. Schulman H, Anderson ME (2010) Ca/calmodulin-dependent protein kinase II in heart failure. Drug Discov Today Dis Mech 7:e117–e122. https://doi.org/10.1016/j.ddmec.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shioya T (2007) A simple technique for isolating healthy heart cells from mouse models. J Physiol Sci 57:327–335. https://doi.org/10.2170/physiolsci.RP010107

    Article  PubMed  Google Scholar 

  45. Shriver M, Stroka KM, Vitolo MI, Martin S, Huso DL, Konstantopoulos K, Kontrogianni-Konstantopoulos A (2015) Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene 34:4248–4259. https://doi.org/10.1038/onc.2014.358

    Article  CAS  PubMed  Google Scholar 

  46. Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR (1986) Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261:13333–13341

    Article  CAS  Google Scholar 

  47. Wang L, Geist J, Grogan A, Hu LR, Kontrogianni-Konstantopoulos A (2018) Thick filament protein network, functions, and disease association. Compr Physiol 8:631–709. https://doi.org/10.1002/cphy.c170023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2 +/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70. https://doi.org/10.1161/01.RES.0000125626.33738.E2

    Article  CAS  PubMed  Google Scholar 

  49. Young P, Ehler E, Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154:123–136. https://doi.org/10.1083/jcb.200102110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan Q, Fan GC, Dong M, Altschafl B, Diwan A, Ren X, Hahn HH, Zhao W, Waggoner JR, Jones LR, Jones WK, Bers DM, Dorn GW 2nd, Wang HS, Valdivia HH, Chu G, Kranias EG (2007) Sarcoplasmic reticulum calcium overloading in junction deficiency enhances cardiac contractility but increases ventricular automaticity. Circulation 115:300–309. https://doi.org/10.1161/CIRCULATIONAHA.106.654699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Maegen Ackermann for propagating the Obscn-ΔIg58/59 mouse model and Dr. Li-Yen Rebecca Hu for propagating the Obscn-ΔIg58/59 mouse model and performing pilot studies.

Funding

This work was supported by the National Institutes of Health [Training Program in Muscle Biology, T32 AR007592-17 to A.G. and A.C., R35HL144998 to H.G, and R01AR071618 and R01AR071614 to C.W.W.]; and the American Heart Association [Grant In Aid 16GRNT31290010 to A.K.K. and AHA 19POST34450156 to H.J.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Kontrogianni-Konstantopoulos.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131431 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grogan, A., Coleman, A., Joca, H. et al. Deletion of obscurin immunoglobulin domains Ig58/59 leads to age-dependent cardiac remodeling and arrhythmia. Basic Res Cardiol 115, 60 (2020). https://doi.org/10.1007/s00395-020-00818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-00818-8

Keywords

Navigation