Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

This article was retracted on 07 November 2022

This article has been updated

Abstract

Cardiac fibrosis (CF), a main process of ventricular remodeling after myocardial infarction (MI), plays a crucial role in the pathogenesis of heart failure (HF) post-MI. It is known that amphiregulin (AR) is involved in fibrosis of several organs. However, the expression of AR and its role post-MI are yet to be determined. This study aimed to investigate the impact of AR on CF post-MI and related mechanisms. Significantly upregulated AR expression was evidenced in the infarct border zone of MI mice in vivo and the AR secretion was enhanced in macrophages, but not in cardiac fibroblasts. In vitro, treatment with AR increased cardiac fibroblast migration, proliferation and collagen synthesis, and upregulated the expression of epidermal growth factor receptor (EGFR) and the downstream genes such as Akt, ERK1/2 and Samd2/3 on cardiac fibroblasts. All these effects could be abrogated by pretreatment with a specific EGFR inhibitor. To verify the functions of AR in MI hearts, lentivirus–AR–shRNA and negative control vectors were delivered into the infarct border zone. After 28 days, knock-down of AR increased the survival rate and improved cardiac function, while decreasing the extent of myocardial fibrosis of MI mice. Moreover, EGFR and the downstream genes were significantly downregulated in lentivirus–AR–shRNA treated MI mice. Our results thus indicate that AR plays an important role in promoting CF after MI partly though activating the EGFR pathway. Targeting AR might be a novel therapeutic option for attenuating CF and improve cardiac function after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Ai W, Zhang Y, Tang QZ, Yan L, Bian ZY, Liu C, Huang H, Bai X, Yin L, Li H (2010) Silibinin attenuates cardiac hypertrophy and fibrosis through blocking EGFR-dependent signaling. J Cell Biochem 110:1111–1122. https://doi.org/10.1002/jcb.22623

    Article  CAS  PubMed  Google Scholar 

  2. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089. https://doi.org/10.1016/j.cell.2015.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:H2196–H2203. https://doi.org/10.1152/ajpheart.01017.2005

    Article  CAS  PubMed  Google Scholar 

  4. Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet 385:812–824. https://doi.org/10.1016/S0140-6736(14)61889-4

    Article  PubMed  Google Scholar 

  5. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295. https://doi.org/10.1016/j.cell.2013.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A (2011) The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta 1816:119–131. https://doi.org/10.1016/j.bbcan.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ (1995) Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 147:325–338

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cohn JN (1995) Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 91:2504–2507

    Article  CAS  PubMed  Google Scholar 

  9. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  10. Ding L, Liu T, Wu Z, Hu B, Nakashima T, Ullenbruch M, De Los Gonzalez, Santos F, Phan SH (2016) Bone marrow CD11c+ cell-derived amphiregulin promotes pulmonary fibrosis. J Immunol 197:303–312. https://doi.org/10.4049/jimmunol.1502479

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, McGinn CM, DePeralta DK, Chen X, Kuroda T, Lanuti M, Schmitt AD, Gupta S, Crenshaw A, Onofrio R, Taylor B, Winckler W, Bardeesy N, Caravan P, Golub TR, Tanabe KK (2014) Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology 59:1577–1590. https://doi.org/10.1002/hep.26898

    Article  CAS  PubMed  Google Scholar 

  12. Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, Iwami S, Nakae S, Komuro I, Nagai R, Manabe I (2017) A heart–brain–kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med 23:611–622. https://doi.org/10.1038/nm.4326

    Article  CAS  PubMed  Google Scholar 

  13. Gaziano TA (2005) Cardiovascular disease in the developing world and its cost-effective management. Circulation 112:3547–3553. https://doi.org/10.1161/CIRCULATIONAHA.105.591792

    Article  PubMed  Google Scholar 

  14. Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K (2012) The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 107:287. https://doi.org/10.1007/s00395-012-0287-z

    Article  CAS  PubMed  Google Scholar 

  15. Hao X, Zhang Y, Zhang X, Nirmalan M, Davies L, Konstantinou D, Yin F, Dobrzynski H, Wang X, Grace A, Zhang H, Boyett M, Huang CL, Lei M (2011) TGF-beta1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging. Circ Arrhythm Electrophysiol 4:397–406. https://doi.org/10.1161/CIRCEP.110.960807

    Article  CAS  PubMed  Google Scholar 

  16. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK, Weissleder R, Nahrendorf M (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. https://doi.org/10.1016/S0140-6736(14)60107-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, Kerkau T, Frantz S (2012) Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125:1652–1663. https://doi.org/10.1161/CIRCULATIONAHA.111.044164

    Article  CAS  PubMed  Google Scholar 

  19. Jiang J, Greulich H, Janne PA, Sellers WR, Meyerson M, Griffin JD (2005) Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression. Cancer Res 65:8968–8974. https://doi.org/10.1158/0008-5472.CAN-05-1829

    Article  CAS  PubMed  Google Scholar 

  20. Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, Lindsey ML (2017) IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol 112:33. https://doi.org/10.1007/s00395-017-0622-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang HR, Cho SJ, Lee CG, Homer RJ, Elias JA (2007) Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. J Biol Chem 282:7723–7732. https://doi.org/10.1074/jbc.M610764200

    Article  CAS  PubMed  Google Scholar 

  22. Kingery JR, Hamid T, Lewis RK, Ismahil MA, Bansal SS, Rokosh G, Townes TM, Ildstad ST, Jones SP, Prabhu SD (2017) Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol 112:19. https://doi.org/10.1007/s00395-017-0609-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kyotani Y, Ota H, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Zhao J, Ozawa K, Nagayama K, Ito S, Takasawa S, Kimura H, Uno M, Yoshizumi M (2013) Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor. Exp Cell Res 319:3042–3050. https://doi.org/10.1016/j.yexcr.2013.08.014

    Article  CAS  PubMed  Google Scholar 

  24. Lajiness JD, Conway SJ (2014) Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol 70:2–8. https://doi.org/10.1016/j.yjmcc.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Lu P, Sternlicht MD, Werb Z (2006) Comparative mechanisms of branching morphogenesis in diverse systems. J Mammary Gland Biol Neoplasia 11:213–228. https://doi.org/10.1007/s10911-006-9027-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Madtes DK, Busby HK, Strandjord TP, Clark JG (1994) Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol 11:540–551. https://doi.org/10.1165/ajrcmb.11.5.7524566

    Article  CAS  PubMed  Google Scholar 

  27. McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, Rappa F, Cappello F, Cabibi D, Pazienza V, Selden C, Roskams T, Vinciguerra M, Oben JA (2015) Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep 5:8812. https://doi.org/10.1038/srep08812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A (2016) Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol 67:2018–2028. https://doi.org/10.1016/j.jacc.2016.02.047

    Article  CAS  PubMed  Google Scholar 

  29. Mishra R, Leahy P, Simonson MS (2002) Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am J Physiol Ren Physiol 283:F1151–F1159. https://doi.org/10.1152/ajprenal.00103.2002

    Article  Google Scholar 

  30. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047. https://doi.org/10.1084/jem.20070885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohkubo N, Matsubara H, Nozawa Y, Mori Y, Murasawa S, Kijima K, Maruyama K, Masaki H, Tsutumi Y, Shibazaki Y, Iwasaka T, Inada M (1997) Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 96:3954–3962

    Article  CAS  PubMed  Google Scholar 

  32. Papadakis AI, Sun C, Knijnenburg TA, Xue Y, Grernrum W, Holzel M, Nijkamp W, Wessels LF, Beijersbergen RL, Bernards R, Huang S (2015) SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res 25:445–458. https://doi.org/10.1038/cr.2015.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perugorria MJ, Latasa MU, Nicou A, Cartagena-Lirola H, Castillo J, Goni S, Vespasiani-Gentilucci U, Zagami MG, Lotersztajn S, Prieto J, Berasain C, Avila MA (2008) The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology 48:1251–1261. https://doi.org/10.1002/hep.22437

    Article  CAS  PubMed  Google Scholar 

  34. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103. https://doi.org/10.1038/nature10868

    Article  CAS  PubMed  Google Scholar 

  35. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584. https://doi.org/10.1002/dvdy.22280

    Article  CAS  PubMed  Google Scholar 

  36. Shivshankar P, Halade GV, Calhoun C, Escobar GP, Mehr AJ, Jimenez F, Martinez C, Bhatnagar H, Mjaatvedt CH, Lindsey ML, Le Saux CJ (2014) Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J Mol Cell Cardiol 76:84–93. https://doi.org/10.1016/j.yjmcc.2014.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    Article  CAS  PubMed  Google Scholar 

  38. Sobrevals L, Rodriguez C, Romero-Trevejo JL, Gondi G, Monreal I, Paneda A, Juanarena N, Arcelus S, Razquin N, Guembe L, Gonzalez-Aseguinolaza G, Prieto J, Fortes P (2010) Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology 51:912–921. https://doi.org/10.1002/hep.23412

    Article  CAS  PubMed  Google Scholar 

  39. Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang J, Xiang M (2017) EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-beta/Smad3 signaling. Circ Res. https://doi.org/10.1161/CIRCRESAHA.117.311045

    Article  PubMed  Google Scholar 

  40. Timmers L, van Keulen JK, Hoefer IE, Meijs MF, van Middelaar B, den Ouden K, van Echteld CJ, Pasterkamp G, de Kleijn DP (2009) Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ Res 104:699–706. https://doi.org/10.1161/CIRCRESAHA.108.189746

    Article  CAS  PubMed  Google Scholar 

  41. Tsoporis JN, Izhar S, Proteau G, Slaughter G, Parker TG (2012) S100B-RAGE dependent VEGF secretion by cardiac myocytes induces myofibroblast proliferation. J Mol Cell Cardiol 52:464–473. https://doi.org/10.1016/j.yjmcc.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  42. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37. https://doi.org/10.1038/nrcardio.2009.199

    Article  PubMed  Google Scholar 

  43. Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG (2009) Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 104:681–693. https://doi.org/10.1007/s00395-009-0033-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Willmarth NE, Baillo A, Dziubinski ML, Wilson K, Riese DJ 2nd, Ethier SP (2009) Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cell Signal 21:212–219. https://doi.org/10.1016/j.cellsig.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Willmarth NE, Ethier SP (2006) Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 281:37728–37737. https://doi.org/10.1074/jbc.M606532200

    Article  CAS  PubMed  Google Scholar 

  46. Xu Y, Meng C, Liu G, Yang D, Fu L, Zhang M, Zhang Z, Xia H, Yao S, Zhang S (2016) Classically activated macrophages protect against lipopolysaccharide-induced acute lung injury by expressing amphiregulin in mice. Anesthesiology 124:1086–1099. https://doi.org/10.1097/ALN.0000000000001026

    Article  CAS  PubMed  Google Scholar 

  47. Yang M, Zheng J, Miao Y, Wang Y, Cui W, Guo J, Qiu S, Han Y, Jia L, Li H, Cheng J, Du J (2012) Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arterioscler Thromb Vasc Biol 32:1675–1686. https://doi.org/10.1161/ATVBAHA.112.248732

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA, Lee CG (2012) Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-beta-induced pulmonary fibrosis. J Biol Chem 287:41991–42000. https://doi.org/10.1074/jbc.M112.356824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of China Grant 81470470 and 81670321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xing Shen.

Ethics declarations

Integrity of research and reporting

Animal studies have been approved by the ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11543 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Jin, X., Hu, CF. et al. RETRACTED ARTICLE: Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway. Basic Res Cardiol 113, 12 (2018). https://doi.org/10.1007/s00395-018-0669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0669-y

Keywords

Navigation