Skip to main content

Advertisement

Log in

Comparative Mechanisms of Branching Morphogenesis in Diverse Systems

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Much progress has been made in recent years toward understanding mechanisms controlling branching morphogenesis, a fundamental aspect of development in a variety of invertebrate and vertebrate organs. To gain a deeper understanding of how branching morphogenesis occurs in the mammary gland, we compare and contrast the cellular and molecular events underlying this process in both invertebrate and vertebrate organs. Thus, in this review, we focus on the common themes that have emerged from such comparative analyses and discuss how they are implemented via a battery of signaling pathways to ensure proper branching morphogenesis in diverse systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

ADAM:

a disintegrin and metalloproteinase

AEL:

after egg laying

AER:

apical ectodermal ridge

BMP:

bone morphogenetic protein

ECM:

extracellular matrix

EGF:

epidermal growth factor

EMT:

epithelial–mesenchymal transition

EGFR:

EGF receptor

FGF:

fibroblast growth factor

FGFR:

FGF receptor

GDNF:

glial-cell-line derived neurotrophic factor

GFP:

green fluorescent protein

HGF:

hepatic growth factor

IGF:

insulin growth factor

MMP:

matrix metalloprotease

RTK:

receptor tyrosine kinase

SHH:

sonic hedgehog

TEB:

terminal end bud

References

  1. Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 2003;4(1):11–8.

    CAS  PubMed  Google Scholar 

  2. Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK. Branching morphogenesis and kidney disease. Development 2004;131(7):1449–62.

    CAS  PubMed  Google Scholar 

  3. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002;296(5570):1046–9.

    CAS  PubMed  Google Scholar 

  4. Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA. Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 2003;19:623–47.

    CAS  PubMed  Google Scholar 

  5. Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 1999;284(5420):1635–9.

    CAS  PubMed  Google Scholar 

  6. Cabernard C, Neumann M, Affolter M. Cellular and molecular mechanisms involved in branching morphogenesis of the Drosophila tracheal system. J Appl Physiol 2004;97(6):2347–53.

    CAS  PubMed  Google Scholar 

  7. Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies 10.1242/dev.02310. Development 2006;133(9):1611–24.

    CAS  PubMed  Google Scholar 

  8. Wang J, Laurie GW. Organogenesis of the exocrine gland. Dev Biol 2004;273(1):1–22.

    CAS  PubMed  Google Scholar 

  9. Robinson GW. Identification of signaling pathways in early mammary gland development by mouse genetics. Breast Cancer Res 2004;6(3):105–8.

    CAS  PubMed  Google Scholar 

  10. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell 2001;1(4):467–75.

    CAS  PubMed  Google Scholar 

  11. Hennighausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev 1998;12(4):449–55.

    CAS  PubMed  Google Scholar 

  12. Hogan BL, Kolodziej PA. Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 2002;3(7):513–23.

    CAS  PubMed  Google Scholar 

  13. Lubarsky B, Krasnow MA. Tube morphogenesis: making and shaping biological tubes. Cell 2003;112(1):19–28.

    CAS  PubMed  Google Scholar 

  14. Nelson WJ. Tube morphogenesis: closure, but many openings remain. Trends Cell Biol 2003;13(12):615–21.

    CAS  PubMed  Google Scholar 

  15. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003;71(1):1–17.

    CAS  PubMed  Google Scholar 

  16. Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999;4(1):9–19.

    CAS  PubMed  Google Scholar 

  17. Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 2005;7(5):220–4.

    CAS  PubMed  Google Scholar 

  18. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005;6(9):715–25.

    CAS  PubMed  Google Scholar 

  19. Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 2006;8(1):201.

    PubMed  Google Scholar 

  20. Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia 2002;7(1):39–48.

    PubMed  Google Scholar 

  21. Chuang PT, McMahon AP. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003;13(2):86–91.

    CAS  PubMed  Google Scholar 

  22. Davies JA. Watching tubules glow and branch. Curr Opin Genet Dev 2005;15(4):364–70.

    CAS  PubMed  Google Scholar 

  23. Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 2004;271(1):98–108.

    CAS  PubMed  Google Scholar 

  24. Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 1996;122(11):3627–37.

    CAS  PubMed  Google Scholar 

  25. Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 2005;8(1):65–74.

    CAS  PubMed  Google Scholar 

  26. Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, et al. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 2005;16(7):1993–2002.

    CAS  PubMed  Google Scholar 

  27. Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, et al. Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 1996;122(12):4013–22.

    CAS  PubMed  Google Scholar 

  28. Uv A, Cantera R, Samakovlis C. Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol 2003;13(6):301–9.

    CAS  PubMed  Google Scholar 

  29. Samakovlis C, Hacohen N, Manning G, Sutherland DC, Guillemin K, Krasnow MA. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 1996;122(5):1395–407.

    CAS  PubMed  Google Scholar 

  30. Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 2000;127(12):2695–704.

    CAS  PubMed  Google Scholar 

  31. Brophy PD, Ostrom L, Lang KM, Dressler GR. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 2001;128(23):4747–56.

    CAS  PubMed  Google Scholar 

  32. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996;382(6586):73–6.

    CAS  PubMed  Google Scholar 

  33. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 1997;124(20):4077–87.

    CAS  PubMed  Google Scholar 

  34. Sato M, Kornberg TB. FGF is an essential mitogen and chemoattractant for the air sacs of the drosophila tracheal system. Dev Cell 2002;3(2):195–207.

    CAS  PubMed  Google Scholar 

  35. Cabernard C, Affolter M. Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. Dev Cell 2005;9(6):831–42.

    CAS  PubMed  Google Scholar 

  36. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 2004;6(1):1–11.

    CAS  PubMed  Google Scholar 

  37. O’Brien LE, Zegers MM, Mostov KE. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 2002;3(7):531–7.

    CAS  PubMed  Google Scholar 

  38. Zegers MM, O’Brien LE, Yu W, Datta A, Mostov KE. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol 2003;13(4):169–76.

    CAS  PubMed  Google Scholar 

  39. Dor Y, Djonov V, Keshet E. Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol 2003;13(3):131–6.

    CAS  PubMed  Google Scholar 

  40. Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 2001;128(21):4329–38.

    CAS  PubMed  Google Scholar 

  41. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 2002;243(1):128–36.

    CAS  PubMed  Google Scholar 

  42. Reichman-Fried M, Dickson B, Hafen E, Shilo BZ. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev 1994;8(4):428–39.

    CAS  PubMed  Google Scholar 

  43. Klambt C, Glazer L, Shilo BZ. Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 1992;6(9):1668–78.

    CAS  PubMed  Google Scholar 

  44. Ghabrial A, Krasnow MA. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 2006;441:746–749.

    Google Scholar 

  45. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005;7(6):245–51.

    CAS  PubMed  Google Scholar 

  46. Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 1998;12(20):3156–61.

    CAS  PubMed  Google Scholar 

  47. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999;21(1):138–41.

    CAS  PubMed  Google Scholar 

  48. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal–epithelial signalling during mouse organogenesis. Development 2000;127(3):483–92.

    PubMed  Google Scholar 

  49. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, et al. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 2004;276(2):403–15.

    CAS  PubMed  Google Scholar 

  50. Dickson C, Spencer-Dene B, Dillon C, Fantl V. Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2000;2(3):191–6.

    CAS  PubMed  Google Scholar 

  51. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 2002;129(1):53–60.

    CAS  PubMed  Google Scholar 

  52. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 2005;132(6):1223–34.

    CAS  PubMed  Google Scholar 

  53. Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, et al. Mutations in the gene encoding fibroblast growth factor 10 are associated with aplasia of lacrimal and salivary glands. 2005;37(2):125–128.

  54. Miettinen PJ, Warburton D, Bu D, Zhao JS, Berger JE, Minoo P, et al. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev Biol 1997;186(2):224–36.

    CAS  PubMed  Google Scholar 

  55. Richards RG, Klotz DM, Walker MP, DiAugustine RP. Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I 10.1210/en.2003-1112. Endocrinology 2004;145(7):3106–10.

    CAS  PubMed  Google Scholar 

  56. Bonnette SG, Hadsell DL. Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology 2001;142(11):4937–45.

    CAS  PubMed  Google Scholar 

  57. Yant J, Buluwela L, Niranjan B, Gusterson B, Kamalati T. In vivo effects of hepatocyte growth factor/scatter factor on mouse mammary gland development. Exp Cell Res 1998;241(2):476–81.

    CAS  PubMed  Google Scholar 

  58. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. BioEssays 2006;28(2):117–27.

    CAS  PubMed  Google Scholar 

  59. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 1998;92(2):253–63.

    CAS  PubMed  Google Scholar 

  60. Kim HJ, Bar-Sagi D. Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 2004;5(6):441–50.

    CAS  PubMed  Google Scholar 

  61. Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 1999;126(11):2515–25.

    CAS  PubMed  Google Scholar 

  62. Reich A, Sapir A, Shilo B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 1999;126(18):4139–47.

    CAS  PubMed  Google Scholar 

  63. Casci T, Vinos J, Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell 1999;96(5):655–65.

    CAS  PubMed  Google Scholar 

  64. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 1999;126(20):4465–75.

    CAS  PubMed  Google Scholar 

  65. Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006;16(1):45–54.

    CAS  PubMed  Google Scholar 

  66. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 2005;8(2):229–39.

    CAS  PubMed  Google Scholar 

  67. Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, et al. Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 2001;102(1–2):81–94.

    CAS  PubMed  Google Scholar 

  68. Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P, Jr., et al. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 1999;9(4):219–22.

    CAS  PubMed  Google Scholar 

  69. Niehrs C, Meinhardt H. Modular feedback. Nature 2002;417(6884):35–6.

    CAS  PubMed  Google Scholar 

  70. Tsang M, Friesel R, Kudoh T, Dawid IB. Identification of Sef, a novel modulator of FGF signalling. Nat Cell Biol 2002;4(2):165–9.

    CAS  PubMed  Google Scholar 

  71. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001;412(6847):647–51.

    CAS  PubMed  Google Scholar 

  72. Furthauer M, Lin W, Ang SL, Thisse B, Thisse C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 2002;4(2):170–4.

    CAS  PubMed  Google Scholar 

  73. Sivak JM, Petersen LF, Amaya E. FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell 2005;8(5):689–701.

    CAS  PubMed  Google Scholar 

  74. Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 2004;7(1):33–44.

    CAS  PubMed  Google Scholar 

  75. Hashimoto S, Nakano H, Singh G, Katyal S. Expression of Spred and Sprouty in developing rat lung. Gene Expr Patterns 2002;2(3–4):347–53.

    CAS  PubMed  Google Scholar 

  76. Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 1998;8(19):1083–6.

    CAS  PubMed  Google Scholar 

  77. Litingtung Y, Lei L, Westphal H, Chiang C. Sonic hedgehog is essential to foregut development. Nat Genet 1998;20(1):58–61.

    CAS  PubMed  Google Scholar 

  78. Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas P, Jr., et al. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn 2004;229(4):722–32.

    CAS  PubMed  Google Scholar 

  79. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP, et al. Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 1999;126(22):5181–93.

    CAS  PubMed  Google Scholar 

  80. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C, et al. The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 2001;238(1):133–44.

    CAS  PubMed  Google Scholar 

  81. Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA. Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 2003;264(1):153–65.

    CAS  PubMed  Google Scholar 

  82. Gallego MI, Beachy PA, Hennighausen L, Robinson GW. Differential requirements for shh in mammary tissue and hair follicle morphogenesis. Dev Biol 2002;249(1):131–9.

    CAS  PubMed  Google Scholar 

  83. Chuang P-T, Kawcak TN, McMahon AP. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev 2003;17(3):342–347.

    CAS  PubMed  Google Scholar 

  84. Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–93.

    CAS  PubMed  Google Scholar 

  85. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000;14(6):627–44.

    CAS  PubMed  Google Scholar 

  86. Vincent S, Ruberte E, Grieder NC, Chen CK, Haerry T, Schuh R, et al. DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. Development 1997;124(14):2741–50.

    CAS  PubMed  Google Scholar 

  87. Lu P, Minowada G, Martin GR. Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development 2006;133(1):33–42.

    CAS  PubMed  Google Scholar 

  88. Pizette S, Abate-Shen C, Niswander L. BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 2001;128(22):4463–74.

    CAS  PubMed  Google Scholar 

  89. Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB, 3rd. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal–ventral patterning of the limb. Development 2001;128(22):4449–61.

    CAS  PubMed  Google Scholar 

  90. Pizette S, Niswander L. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 1999;126(5):883–94.

    CAS  PubMed  Google Scholar 

  91. Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005;57(5 Pt 2):26R–37R.

    PubMed  Google Scholar 

  92. Takahashi H, Ikeda T. Transcripts for two members of the transforming growth factor-beta superfamily BMP-3 and BMP-7 are expressed in developing rat embryos. Dev Dyn 1996;207(4):439–49.

    CAS  PubMed  Google Scholar 

  93. Eblaghie MC, Reedy M, Oliver T, Mishina Y, Hogan BL. Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol 2006;291(1):67–82.

    CAS  PubMed  Google Scholar 

  94. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 2000;105(7):863–73.

    Article  CAS  PubMed  Google Scholar 

  95. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMP antagonism induces the epithelial–mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004;131(14):3401–10.

    CAS  PubMed  Google Scholar 

  96. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, et al. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 2004;266(2):285–98.

    CAS  PubMed  Google Scholar 

  97. Serra R, Pelton RW, Moses HL. TGF beta 1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures. Development 1994;120(8):2153–61.

    CAS  PubMed  Google Scholar 

  98. Zhao J, Bu D, Lee M, Slavkin HC, Hall FL, Warburton D. Abrogation of transforming growth factor-beta type II receptor stimulates embryonic mouse lung branching morphogenesis in culture. Dev Biol 1996;180(1):242–57.

    CAS  PubMed  Google Scholar 

  99. Santos OF, Nigam SK. HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-beta. Dev Biol 1993;160(2):293–302.

    CAS  PubMed  Google Scholar 

  100. Pierce DF, Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 1993;7(12A): 2308–17.

    CAS  PubMed  Google Scholar 

  101. Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-beta 1 null mice. Science 1994;264(5167):1936–8.

    CAS  PubMed  Google Scholar 

  102. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial–mesenchymal interaction. Nat Genet 1995;11(4):415–21.

    CAS  PubMed  Google Scholar 

  103. Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 2002;160(6):2081–93.

    CAS  PubMed  Google Scholar 

  104. Pollard JW. Tumour–stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res 2001;3(4):230–7.

    CAS  PubMed  Google Scholar 

  105. Serra R, Crowley MR. Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr-Relat Cancer 2005;12(4):749–60.

    CAS  PubMed  Google Scholar 

  106. Joseph H, Gorska AE, Sohn P, Moses HL, Serra R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999;10(4):1221–34.

    CAS  PubMed  Google Scholar 

  107. Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol 2005;279(1):58–72.

    CAS  PubMed  Google Scholar 

  108. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, et al. Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 2005;24(32):5053–68.

    CAS  PubMed  Google Scholar 

  109. Beer HD, Florence C, Dammeier J, McGuire L, Werner S, Duan DR. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression. Oncogene 1997;15(18):2211–8.

    CAS  PubMed  Google Scholar 

  110. Lebeche D, Malpel S, Cardoso WV. Fibroblast growth factor interactions in the developing lung. Mech Dev 1999;86(1–2):125–36.

    CAS  PubMed  Google Scholar 

  111. Tomlinson DC, Grindley JC, Thomson AA. Regulation of Fgf10 gene expression in the prostate: identification of transforming growth factor-beta1 and promoter elements. Endocrinology 2004;145(4):1988–95.

    CAS  PubMed  Google Scholar 

  112. Heine UI, Munoz EF, Flanders KC, Roberts AB, Sporn MB. Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis. Development 1990;109(1):29–36.

    CAS  PubMed  Google Scholar 

  113. Silberstein GB, Strickland P, Coleman S, Daniel CW. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 1990;110(6):2209–19.

    CAS  PubMed  Google Scholar 

  114. Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001;52(2):155–62.

    CAS  PubMed  Google Scholar 

  115. White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM. FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 2006;133(8):1507–17.

    CAS  PubMed  Google Scholar 

  116. Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 2006;291(2):325–39.

    CAS  PubMed  Google Scholar 

  117. Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 1998;9(9):777–85.

    CAS  PubMed  Google Scholar 

  118. Kenney NJ, Bowman A, Korach KS, Barrett JC, Salomon DS. Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res Treat 2003;79(2):161–73.

    CAS  PubMed  Google Scholar 

  119. Coleman S, Silberstein GB, Daniel CW. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 1988;127(2):304–15.

    CAS  PubMed  Google Scholar 

  120. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999;126(12):2739–50.

    CAS  PubMed  Google Scholar 

  121. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2005;132(17):3923–33.

    CAS  PubMed  Google Scholar 

  122. Zhao J, Chen H, Peschon JJ, Shi W, Zhang Y, Frank SJ, et al. Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev Biol 2001;232(1):204–18.

    CAS  PubMed  Google Scholar 

  123. Kheradmand F, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 2002;115(Pt 4):839–48.

    CAS  PubMed  Google Scholar 

  124. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463–516.

    CAS  PubMed  Google Scholar 

  125. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004;16(5):558–64.

    CAS  PubMed  Google Scholar 

  126. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature 2003;423(6942):876–81.

    CAS  PubMed  Google Scholar 

  127. Wessells NK, Cohen JH. Effects of collagenase on developing epithelia in vitro: lung, ureteric bud, and pancreas. Dev Biol 1968;18(3):294–309.

    CAS  PubMed  Google Scholar 

  128. Banerjee SD, Cohn RH, Bernfield MR. Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. J Cell Biol 1977;73(2):445–63.

    CAS  PubMed  Google Scholar 

  129. Nakanishi Y, Sugiura F, Kishi J, Hayakawa T. Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol 1986;113(1):201–6.

    CAS  PubMed  Google Scholar 

  130. Lelongt B, Trugnan G, Murphy G, Ronco PM. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J. Cell Biol. 1997;136(6):1363–1373.

    CAS  PubMed  Google Scholar 

  131. Lelongt B, Ronco P. Role of matrix metalloproteinases in kidney development and glomerulopathy: lessons from transgenic mice. Nephrol Dial Transplant 2002;17(Suppl 9):28–31.

    CAS  PubMed  Google Scholar 

  132. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 2003;162(6):1123–33.

    CAS  PubMed  Google Scholar 

  133. Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 1998;8(11):437–41.

    CAS  PubMed  Google Scholar 

  134. Vogel WF, Aszodi A, Alves F, Pawson T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 2001;21(8):2906–17.

    CAS  PubMed  Google Scholar 

  135. Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM. The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 2002;161(1):337–44.

    CAS  PubMed  Google Scholar 

  136. Klinowska TC, Soriano JV, Edwards GM, Oliver JM, Valentijn AJ, Montesano R, et al. Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Dev Biol 1999;215(1):13–32.

    CAS  PubMed  Google Scholar 

  137. White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U, et al. Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004;6(2):159–70.

    CAS  PubMed  Google Scholar 

  138. Hathaway HJ, Shur BD. Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development 1996;122(9):2859–72.

    CAS  PubMed  Google Scholar 

  139. Muschler J, Levy D, Boudreau R, Henry M, Campbell K, Bissell MJ. A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res 2002;62(23):7102–9.

    CAS  PubMed  Google Scholar 

  140. Davies JA. Do different branching epithelia use a conserved developmental mechanism? BioEssays 2002;24(10):937–48.

    CAS  PubMed  Google Scholar 

  141. Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 2006;Oct 12; [Epub ahead of print].

  142. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Constantini FD, et al. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 2006; Nov 15;299(2):466–77.

    CAS  PubMed  Google Scholar 

  143. Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 2004;131(14):3345–56.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to authors whose work is not cited due to space limitations. This work was supported by grants CA057621, CA058207 and ES012801 from the NIH and an institutional NRSA HL07731 (P. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zena Werb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Sternlicht, M.D. & Werb, Z. Comparative Mechanisms of Branching Morphogenesis in Diverse Systems. J Mammary Gland Biol Neoplasia 11, 213–228 (2006). https://doi.org/10.1007/s10911-006-9027-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9027-z

Keywords

Navigation