Skip to main content

Advertisement

Log in

Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessary for post-infarct cardiac sympathetic sprouting. Ovariectomized female rats received left coronary artery ligation or sham operation, followed by intravenous injection of liposomes containing saline vehicle or clodronate, which kills macrophages. Sham-operated myocardium contained some sympathetic axons, few myofibroblasts and T cells and no CD-68-positive macrophages. In rats receiving saline liposomes through 7 days post-ligation, the posterolateral infarct border contained numerous myofibroblasts, macrophages and T cells, and sympathetic innervation was increased twofold. Treatment with clodronate liposomes reduced macrophage numbers by 69%, while myofibroblast area was reduced by 23% and T cell number was unaffected. Clodronate liposome treatment reduced sympathetic axon density to levels comparable to the uninfarcted heart. NGF protein content measured in western blots was reduced to 33% of that present in infarcts where rats received saline-containing liposomes. Tissue morphometry confirmed that NGF immunostaining was dramatically reduced, and this was attributable primarily to reduced macrophage content. These results show that macrophage destruction markedly reduces post-infarction levels of NGF and that the presence of elevated numbers of macrophages is obligatory for development of sympathetic hyperinnervation following myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annu Rev Immunol 2:283–318

    Article  CAS  PubMed  Google Scholar 

  2. Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, Kimura-Matsumoto M, Ishiguro S, Morita H, Kobayashi Y, Ishii T (2006) Myocardial apoptosis associated with the expression of proinflammatory cytokines during the course of myocardial infarction. Mod Pathol 19:588–598

    Article  CAS  PubMed  Google Scholar 

  3. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PJ, Madtes DK, Raines EW, Ross R, Sporn MB (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 84:6020–6024

    Article  CAS  PubMed  Google Scholar 

  4. Barouch R, Kazimirsky G, Appel E, Brodie C (2001) Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAP kinase activation. J Leukoc Biol 69:1019–1026

    CAS  PubMed  Google Scholar 

  5. Batchelor PE, Porritt MJ, Martinello P, Parish CL, Liberatore GT, Donnan GA, Howells DW (2002) Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol Cell Neurosci 21:436–453

    Article  CAS  PubMed  Google Scholar 

  6. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS (2000) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    CAS  PubMed  Google Scholar 

  7. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    CAS  PubMed  Google Scholar 

  8. Caroleo MC, Costa N, Bracci-Laudiero L, Aloe L (2001) Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors. J Neuroimmunol 113:193–201

    Article  CAS  PubMed  Google Scholar 

  9. Chen LS, Zhou S, Fishbein MC, Chen PS (2007) New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol 18:123–127

    Article  PubMed  Google Scholar 

  10. Deng GM, Verdrengh M, Liu ZQ, Tarkowski A (2000) The major role of macrophages and their product tumor necrosis factor alpha in the induction of arthritis triggered by bacterial DNA containing CpG motifs. Arthritis Rheum 43:2283–2289

    Article  CAS  PubMed  Google Scholar 

  11. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  PubMed  Google Scholar 

  12. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677

    CAS  PubMed  Google Scholar 

  13. Dubinett SM, Huang M, Dhanani S, Wang J, Beroiza T (1993) Down-regulation of macrophage transforming growth factor-beta messenger RNA expression by IL-7. J Immunol 151:6670–6680

    CAS  PubMed  Google Scholar 

  14. El-Helou V, Proulx C, Gosselin H, Clement R, Mimee A, Villeneuve L, Calderone A (2007) Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infarct region. J Appl Physiol 104:150–156

    Article  PubMed  Google Scholar 

  15. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102:393–411

    Article  CAS  PubMed  Google Scholar 

  16. Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907–1939

    Article  CAS  PubMed  Google Scholar 

  17. Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    CAS  PubMed  Google Scholar 

  18. Frangogiannis NG, Youker KA, Rossen RD, Gwechenberger M, Lindsey MH, Mendoza LH, Michael LH, Ballantyne CM, Smith CW, Entman ML (1998) Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol 30:2567–2576

    Article  CAS  PubMed  Google Scholar 

  19. Frantz S, Hu K, Adamek A, Wolf J, Sallam A, Maier SK, Lonning S, Ling H, Ertl G, Bauersachs J (2008) Transforming growth factor beta inhibition increases mortality and left ventricular dilatation after myocardial infarction. Basic Res Cardiol 103:485–492

    Article  CAS  PubMed  Google Scholar 

  20. Frucht DM, Fukao T, Bogdan C, Schindler H, O’Shea JJ, Koyasu S (2001) IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22:556–560

    Article  CAS  PubMed  Google Scholar 

  21. Gabbiani G (1996) The cellular derivation and the life span of the myofibroblast. Pathol Res Pract 192:708–711

    CAS  PubMed  Google Scholar 

  22. Galeazzi F, Haapala EM, van Rooijen N, Vallance BA, Collins SM (2000) Inflammation-induced impairment of enteric nerve function in nematode-infected mice is macrophage dependent. Am J Physiol Gastrointest Liver Physiol 278:G259–G265

    CAS  PubMed  Google Scholar 

  23. Gessani S, Belardelli F (1998) IFN-gamma expression in macrophages and its possible biological significance. Cytokine Growth Factor Rev 9:117–123

    Article  CAS  PubMed  Google Scholar 

  24. Grace SL, Fry R, Cheung A, Stewart DE (2004) Cardiovascular disease. BMC Womens Health 4 Suppl 1:S15

    Article  PubMed  Google Scholar 

  25. Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA (1990) Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol 145:4290–4297

    CAS  PubMed  Google Scholar 

  26. Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154

    Article  CAS  PubMed  Google Scholar 

  27. Hasan W, Zhang R, Liu M, Warn JD, Smith PG (2000) Coordinate expression of NGF and alpha-smooth muscle actin mRNA and protein in cutaneous wound tissue of developing and adult rats. Cell Tissue Res 300:97–109

    CAS  PubMed  Google Scholar 

  28. Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee JK, Matsumura K, Tomita Y, Miyoshi S, Shimoda K, Makino S, Sano M, Kodama I, Ogawa S, Fukuda K (2007) Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13:604–612

    Article  CAS  PubMed  Google Scholar 

  29. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, Dawood F, Wen WH, Shou Z, Liu P (1999) Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 99:1492–1498

    CAS  PubMed  Google Scholar 

  30. Kannel WB, Hjortland MC, McNamara PM, Gordon T (1976) Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med 85:447–452

    CAS  PubMed  Google Scholar 

  31. Kim LR, Whelpdale K, Zurowski M, Pomeranz B (1998) Sympathetic denervation impairs epidermal healing in cutaneous wounds. Wound Repair Regen 6:194–201

    Article  CAS  PubMed  Google Scholar 

  32. Lee TM, Lin MS, Chang NC (2007) Effect of pravastatin on sympathetic reinnervation in postinfarcted rats. Am J Physiol Heart Circ Physiol 293:H3617–H3626

    Article  CAS  PubMed  Google Scholar 

  33. Lee TM, Lin MS, Chang NC (2007) Physiological concentration of 17beta-estradiol on sympathetic reinnervation in ovariectomized infarcted rats. Endocrinology 120:5–1213

    Google Scholar 

  34. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  35. Li W, Knowlton D, Van Winkle DM, Habecker BA (2004) Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 286:H2229–H2236

    Article  CAS  PubMed  Google Scholar 

  36. Lie JT, Pairolero PC, Holley KE, Titus JL (1975) Macroscopic enzyme-mapping verification of large, homogeneous, experimental myocardial infarcts of predictable size and location in dogs. J Thorac Cardiovasc Surg 69:599–605

    CAS  PubMed  Google Scholar 

  37. Lindholm D, Castren E, Berzaghi M, Blochl A, Thoenen H (1994) Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain-implications for neuronal plasticity. J Neurobiol 25:1362–1372

    Article  CAS  PubMed  Google Scholar 

  38. McClellan SA, Huang X, Barrett RP, van Rooijen N, Hazlett LD (2003) Macrophages restrict Pseudomonas aeruginosa growth, regulate polymorphonuclear neutrophil influx, and balance pro- and anti-inflammatory cytokines in BALB/c mice. J Immunol 170:5219–5227

    CAS  PubMed  Google Scholar 

  39. Micera A, Puxeddu I, Aloe L, Levi-Schaffer F (2003) New insights on the involvement of nerve growth factor in allergic inflammation and fibrosis. Cytokine Growth Factor Rev 14:369–374

    Article  CAS  PubMed  Google Scholar 

  40. Micklem K, Rigney E, Cordell J, Simmons D, Stross P, Turley H, Seed B, Mason D (1989) A human macrophage-associated antigen (CD68) detected by six different monoclonal antibodies. Br J Haematol 73:6–11

    Article  CAS  PubMed  Google Scholar 

  41. Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513

    Article  PubMed  Google Scholar 

  42. Mizutani H, May LT, Sehgal PB, Kupper TS (1989) Synergistic interactions of IL-1 and IL-6 in T cell activation. Mitogen but not antigen receptor-induced proliferation of a cloned T helper cell line is enhanced by exogenous IL-6. J Immunol 143:896–901

    CAS  PubMed  Google Scholar 

  43. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15:331–345

    Article  CAS  PubMed  Google Scholar 

  44. Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108

    Article  CAS  PubMed  Google Scholar 

  45. Myerburg RJ, Castellanos A (1992) Cardiac arrest and sudden cardiac death. WB Saunders, Philadelphia

    Google Scholar 

  46. Myerburg RJ, Kessler KM, Castellanos A (1992) Sudden cardiac death. Structure, function, and time-dependence of risk. Circulation 85:I2–I10

    CAS  PubMed  Google Scholar 

  47. Onai Y, Suzuki J, Kakuta T, Maejima Y, Haraguchi G, Fukasawa H, Muto S, Itai A, Isobe M (2004) Inhibition of IkappaB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. Cardiovasc Res 63:51–59

    Article  CAS  PubMed  Google Scholar 

  48. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    Article  CAS  PubMed  Google Scholar 

  49. Salkowski CA, Neta R, Wynn TA, Strassmann G, van Rooijen N, Vogel SN (1995) Effect of liposome-mediated macrophage depletion on LPS-induced cytokine gene expression and radioprotection. J Immunol 155:3168–3179

    CAS  PubMed  Google Scholar 

  50. Schmitt-Graff A, Desmouliere A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 425:3–24

    Article  CAS  PubMed  Google Scholar 

  51. Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407

    Article  CAS  PubMed  Google Scholar 

  52. Shelton DL, Reichardt LF (1984) Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci USA 81:7951–7955

    Article  CAS  PubMed  Google Scholar 

  53. Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  CAS  PubMed  Google Scholar 

  54. Smith PG, Liu M (2002) Impaired cutaneous wound healing after sensory denervation in developing rats: effects on cell proliferation and apoptosis. Cell Tissue Res 307:281–291

    Article  CAS  PubMed  Google Scholar 

  55. Solomon SD, Zelenkofske S, McMurray JJ, Finn PV, Velazquez E, Ertl G, Harsanyi A, Rouleau JL, Maggioni A, Kober L, White H, Van de Werf F, Pieper K, Califf RM, Pfeffer MA (2005) Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med 352:2581–2588

    Article  CAS  PubMed  Google Scholar 

  56. Souza BR, Cardoso JF, Amadeu TP, Desmouliere A, Costa AM (2005) Sympathetic denervation accelerates wound contraction but delays reepithelialization in rats. Wound Repair Regen 13:498–505

    Article  PubMed  Google Scholar 

  57. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S (2007) Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen 15:708–717

    Article  PubMed  Google Scholar 

  58. Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, Van Rooijen N, Simeonova PP (2006) Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290:R1488–R1495

    CAS  PubMed  Google Scholar 

  59. Torres PF, Slegers TP, Peek R, van Rooijen N, van der Gaag R, Kijlstra A, de Vos AF (1999) Changes in cytokine mRNA levels in experimental corneal allografts after local clodronate-liposome treatment. Invest Ophthalmol Vis Sci 40:3194–3201

    CAS  PubMed  Google Scholar 

  60. van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    Article  PubMed  Google Scholar 

  61. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174:83–93

    Article  PubMed  Google Scholar 

  62. van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193:93–99

    Article  PubMed  Google Scholar 

  63. Vracko R, Thorning D, Frederickson RG (1991) Nerve fibers in human myocardial scars. Hum Pathol 22:138–146

    Article  CAS  PubMed  Google Scholar 

  64. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507

    Article  CAS  PubMed  Google Scholar 

  65. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    Article  CAS  PubMed  Google Scholar 

  66. Zoubina EV, Fan Q, Smith PG (1998) Variations in uterine innervation during the estrous cycle in rat. J Comp Neurol 397:561–571

    Article  CAS  PubMed  Google Scholar 

  67. Zoubina EV, Mize AL, Alper RH, Smith PG (2001) Acute and chronic estrogen supplementation decreases uterine sympathetic innervation in ovariectomized adult virgin rats. Histol Histopathol 16:989–996

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH HL079652, RR016475, and P30HD02528. Clodronate was a gift of Roche Diagnostics GmbH, Mannheim, Germany. We thank Dr. Donald Warn of the Kansas Intellectual and Developmental Disabilities Research Center Integrative Imaging Core for his assistance with imaging, Zhaohui Liao, Argenia Doss and Sarah Tague for their assistance with the animal preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernli, G., Hasan, W., Bhattacherjee, A. et al. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 104, 681–693 (2009). https://doi.org/10.1007/s00395-009-0033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0033-3

Keywords

Navigation