Skip to main content

Advertisement

Log in

Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Caspase activation and recruitment domain 3 (CARD3) is a caspase recruitment domain (CARD)-containing serine/threonine kinase and plays a pivotal role in apoptosis, immunity, tissue development and proliferation. To date, the causal relationship between CARD3 and myocardial infarction (MI) remains largely unexplored. This study aimed to identify the functional significance of CARD3 in the regulation of cardiac remodelling after MI and the underlying mechanisms of its effects. The levels of CARD3 expression were up-regulated in failing human and mouse post-infarction hearts. In addition, CARD3-knockout (KO) mice and transgenic mice overexpressing CARD3 in the heart were then generated and subjected to MI. Compared with wild-type (WT) control mice, CARD3-KO mice developed smaller infarct sizes, improved survival rates, and preserved left ventricle (LV) function after MI. Significantly, CARD3-KO hearts had less cardiomyocyte apoptosis and inflammatory cell infiltration in the infarct border zone. Attenuated LV remodelling was also observed in the KO hearts following MI, with reduced cardiac hypertrophy and fibrosis. Conversely, CARD3 overexpression resulted in the opposite MI-induced phenotype. Similar results were observed in ex vivo-cultured neonatal rat cardiomyocytes exposed to hypoxia. Mechanistically, we discovered that the CARD3-mediated detrimental effects of MI were associated with the activation of the NF-κB and p38 signalling cascades. Taken together, these data demonstrate that CARD3 serves as a novel positive modulator of ventricular remodelling after MI via the regulation of the NF-κB and p38 signalling. Thus, CARD3 may be a promising therapeutic target for the treatment of heart failure after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abe J, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Circ Res 86:607–609

    Article  CAS  PubMed  Google Scholar 

  2. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I (2004) Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 43:295–301

    Article  CAS  PubMed  Google Scholar 

  3. Chen K, Gao L, Liu Y, Zhang Y, Jiang DS, Wei X, Zhu XH, Zhang R, Chen Y, Yang Q, Kioka N, Zhang XD, Li H (2013) Vinexin-beta protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway. Basic Res Cardiol 108:338. doi:10.1007/s00395-013-0338-0

    Article  PubMed  Google Scholar 

  4. Dorn GW 2nd (2009) Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81:465–473. doi:10.1093/cvr/cvn243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Du X, Jiang S, Liu H, Xin X, Li J, Geng M, Jiang H (2010) MS80, a novel sulfated polysaccharide, inhibits CD40-NF-kappaB pathway via targeting RIP2. Mol Cell Biochem 337:277–285. doi:10.1007/s11010-009-0309-9

    Article  CAS  PubMed  Google Scholar 

  6. Engelbrecht AM, Niesler C, Page C, Lochner A (2004) p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol 99:338–350. doi:10.1007/s00395-004-0478-3

    Article  CAS  PubMed  Google Scholar 

  7. Feuerstein GZ, Young PR (2000) Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res 45:560–569

    Article  CAS  PubMed  Google Scholar 

  8. Frangogiannis NG (2014) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63:185–195. doi:10.1097/FJC.0000000000000003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gajarsa JJ, Kloner RA (2011) Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 16:13–21. doi:10.1007/s10741-010-9181-7

    Article  PubMed  Google Scholar 

  10. Gallagher G, Menzie S, Huang Y, Jackson C, Hunyor SN (2007) Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res Cardiol 102:63–72. doi:10.1007/s00395-006-0610-7

    Article  CAS  PubMed  Google Scholar 

  11. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    Article  Google Scholar 

  12. Gottlieb RA (2003) Mitochondrial signaling in apoptosis: mitochondrial daggers to the breaking heart. Basic Res Cardiol 98:242–249. doi:10.1007/s00395-003-0404-0

    CAS  PubMed  Google Scholar 

  13. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  14. Heusch G, Kleinbongard P, Skyschally A (2013) Myocardial infarction and coronary microvascular obstruction: an intimate, but complicated relationship. Basic Res Cardiol 108:380. doi:10.1007/s00395-013-0380-y

    Article  PubMed  Google Scholar 

  15. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed Central  PubMed  Google Scholar 

  16. Heusch P, Canton M, Aker S, van de Sand A, Konietzka I, Rassaf T, Menazza S, Brodde OE, Di Lisa F, Heusch G, Schulz R (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br J Pharmacol 160:1408–1416. doi:10.1111/j.1476-5381.2010.00793.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M (2004) Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J 18:1550–1552. doi:10.1096/fj.04-1642fje

    CAS  PubMed  Google Scholar 

  18. Inohara N, Koseki T, Lin J, del Peso L, Lucas PC, Chen FF, Ogura Y, Nunez G (2000) An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 275:27823–27831. doi:10.1074/jbc.M003415200

    CAS  PubMed  Google Scholar 

  19. Jacquet S, Nishino Y, Kumphune S, Sicard P, Clark JE, Kobayashi KS, Flavell RA, Eickhoff J, Cotten M, Marber MS (2008) The role of RIP2 in p38 MAPK activation in the stressed heart. J Biol Chem 283:11964–11971. doi:10.1074/jbc.M707750200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, Chen X, Zhang XD, Li H (2014) Interferon regulatory factor 1 is required for cardiac remodeling in response to pressure overload. Hypertension 64:77–86. doi:10.1161/HYPERTENSIONAHA.114.03229

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, Medzhitov R, Flavell RA (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:194–199. doi:10.1038/416194a

    Article  CAS  PubMed  Google Scholar 

  22. Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81:519–527. doi:10.1093/cvr/cvn317

    Article  CAS  PubMed  Google Scholar 

  23. Levin MC, Jirholt P, Wramstedt A, Johansson ME, Lundberg AM, Trajkovska MG, Stahlman M, Fogelstrand P, Brisslert M, Fogelstrand L, Yan ZQ, Hansson GK, Bjorkbacka H, Olofsson SO, Boren J (2011) Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation. Circ Res 109:1210–1218. doi:10.1161/CIRCRESAHA.111.246702

    Article  CAS  PubMed  Google Scholar 

  24. Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, Yang Q, Huang Y, Wei YS, Liu PP, Liu DP, Liang CC (2007) Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115:1885–1894. doi:10.1161/CIRCULATIONAHA.106.656835

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Chen W, Zhu Y, Wang X, Jiang DS, Huang F, Wang L, Xiang F, Qin W, Wang Q, Zhang R, Zhu X, Li H, Chen X (2014) Caspase recruitment domain 6 protects against cardiac hypertrophy in response to pressure overload. Hypertension 64:94–102. doi:10.1161/HYPERTENSIONAHA.113.03021

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150. doi:10.1007/s00395-009-0067-6

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Bian ZY, Zhang R, Zhang Y, Liu C, Yan L, Zhang SM, Jiang DS, Wei X, Zhu XH, Chen M, Wang AB, Chen Y, Yang Q, Liu PP, Li H (2013) Interferon regulatory factor 3 is a negative regulator of pathological cardiac hypertrophy. Basic Res Cardiol 108:326. doi:10.1007/s00395-012-0326-9

    Article  PubMed  Google Scholar 

  28. Marber MS, Rose B, Wang Y (2011) The p38 mitogen-activated protein kinase pathway–a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 51:485–490. doi:10.1016/j.yjmcc.2010.10.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Martindale JJ, Wall JA, Martinez-Longoria DM, Aryal P, Rockman HA, Guo Y, Bolli R, Glembotski CC (2005) Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem 280:669–676. doi:10.1074/jbc.M406690200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Maulik N, Sato M, Price BD, Das DK (1998) An essential role of NFkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 429:365–369

    Article  CAS  PubMed  Google Scholar 

  31. McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK (2013) Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci USA 110:9770–9775. doi:10.1073/pnas.1304913110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McCarthy JV, Ni J, Dixit VM (1998) RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem 273:16968–16975

    Article  CAS  PubMed  Google Scholar 

  33. Munz B, Hildt E, Springer ML, Blau HM (2002) RIP2, a checkpoint in myogenic differentiation. Mol Cell Biol 22:5879–5886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Muslin AJ (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci Lond 115:203–218. doi:10.1042/CS20070430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. doi:10.1161/01.RES.0000130526.20854.fa

    Article  CAS  PubMed  Google Scholar 

  36. Onai Y, Suzuki J, Maejima Y, Haraguchi G, Muto S, Itai A, Isobe M (2007) Inhibition of NF-{kappa}B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol 292:H530–H538. doi:10.1152/ajpheart.00549.2006

    Article  CAS  PubMed  Google Scholar 

  37. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367. doi:10.1016/S0140-6736(06)68074-4

    Article  PubMed  Google Scholar 

  38. Park JH, Kim YG, McDonald C, Kanneganti TD, Hasegawa M, Body-Malapel M, Inohara N, Nunez G (2007) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178:2380–2386

    Article  CAS  PubMed  Google Scholar 

  39. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599. doi:10.1089/ars.2011.4459

    Article  CAS  PubMed  Google Scholar 

  40. Prech M, Marszalek A, Schroder J, Filas V, Lesiak M, Jemielity M, Araszkiewicz A, Grajek S (2010) Apoptosis as a mechanism for the elimination of cardiomyocytes after acute myocardial infarction. Am J Cardiol 105:1240–1245. doi:10.1016/j.amjcard.2009.12.039

    Article  PubMed  Google Scholar 

  41. Rahman MA, Sundaram K, Mitra S, Gavrilin MA, Wewers MD (2014) Receptor interacting protein-2 plays a critical role in human lung epithelial cells survival in response to Fas-induced cell-death. PLoS One 9:e92731. doi:10.1371/journal.pone.0092731

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ (2005) Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol 38:617–623. doi:10.1016/j.yjmcc.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  43. Schulz R, Aker S, Belosjorow S, Konietzka I, Rauen U, Heusch G (2003) Stress kinase phosphorylation is increased in pacing-induced heart failure in rabbits. Am J Physiol Heart Circ Physiol 285:H2084–H2090. doi:10.1152/ajpheart.01038.2002

    Article  CAS  PubMed  Google Scholar 

  44. See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H (2004) p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 44:1679–1689. doi:10.1016/j.jacc.2004.07.038

    Article  CAS  PubMed  Google Scholar 

  45. Sicard P, Jacquet S, Kobayashi KS, Flavell RA, Marber MS (2009) Pharmacological postconditioning effect of muramyl dipeptide is mediated through RIP2 and TAK1. Cardiovasc Res 83:277–284. doi:10.1093/cvr/cvp055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  47. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R, Liao MY, Tu X, Liao YH, Cheng X (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232. doi:10.1007/s00395-011-0232-6

    Article  PubMed  Google Scholar 

  48. Timmers L, van Keulen JK, Hoefer IE, Meijs MF, van Middelaar B, den Ouden K, van Echteld CJ, Pasterkamp G, de Kleijn DP (2009) Targeted deletion of nuclear factor kappaB p50 enhances cardiac remodeling and dysfunction following myocardial infarction. Circ Res 104:699–706. doi:10.1161/CIRCRESAHA.108.189746

    Article  CAS  PubMed  Google Scholar 

  49. Usluoglu N, Pavlovic J, Moelling K, Radziwill G (2007) RIP2 mediates LPS-induced p38 and IkappaBalpha signaling including IL-12 p40 expression in human monocyte-derived dendritic cells. Eur J Immunol 37:2317–2325. doi:10.1002/eji.200636388

    Article  CAS  PubMed  Google Scholar 

  50. Valen G (2004) Signal transduction through nuclear factor kappa B in ischemia-reperfusion and heart failure. Basic Res Cardiol 99:1–7. doi:10.1007/s00395-003-0442-7

    Article  CAS  PubMed  Google Scholar 

  51. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30–37. doi:10.1038/nrcardio.2009.199

    Article  PubMed  Google Scholar 

  52. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423. doi:10.1161/CIRCULATIONAHA.106.679589

    Article  CAS  PubMed  Google Scholar 

  53. Xiao J, Moon M, Yan L, Nian M, Zhang Y, Liu C, Lu J, Guan H, Chen M, Jiang D, Jiang H, Liu PP, Li H (2012) Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Res Cardiol 107:239. doi:10.1007/s00395-011-0239-z

    Article  PubMed  Google Scholar 

  54. Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA (2002) Myocardial infarction and cardiac remodelling in mice. Exp Physiol 87:547–555

    Article  CAS  PubMed  Google Scholar 

  55. Yin X, Krikorian P, Logan T, Csizmadia V (2010) Induction of RIP-2 kinase by proinflammatory cytokines is mediated via NF-kappaB signaling pathways and involves a novel feed-forward regulatory mechanism. Mol Cell Biochem 333:251–259. doi:10.1007/s11010-009-0226-y

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida K, Yoshiyama M, Omura T, Nakamura Y, Kim S, Takeuchi K, Iwao H, Yoshikawa J (2001) Activation of mitogen-activated protein kinases in the non-ischemic myocardium of an acute myocardial infarction in rats. Jpn Circ J 65:808–814

    Article  CAS  PubMed  Google Scholar 

  57. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. doi:10.1038/nrm2308

    Article  CAS  PubMed  Google Scholar 

  58. Zhang WH, Wang X, Narayanan M, Zhang Y, Huo C, Reed JC, Friedlander RM (2003) Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci USA 100:16012–16017. doi:10.1073/pnas.2534856100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zhang Y, Liu X, She ZG, Jiang DS, Wan N, Xia H, Zhu XH, Wei X, Zhang XD, Li H (2014) Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury. Basic Res Cardiol 109:434. doi:10.1007/s00395-014-0434-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard Flavell (Howard Hughes Medical Institute, Yale University, New Haven, Connecticut) for providing the CARD3-KO mice. We thank Rui Zhang, Xueyong Zhu, Zhangli Li, Ya Deng, Yan Zhang and Xin Zhang for providing experimental technological assistance. Dr. Xin Chen is a fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine. This study was supported by grants from the National Natural Science Foundation of China (No. 81370259), the Natural Science Foundation for Young Scientists of Jiangsu Province (No. BK20150093), and the 333 project in Jiangsu Province (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, X., Chen, W. et al. Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Res Cardiol 110, 56 (2015). https://doi.org/10.1007/s00395-015-0515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0515-4

Keywords

Navigation