Skip to main content
Log in

NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1−/−) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1−/− mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1−/− mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amour J, Loyer X, Le Guen M, Mabrouk N, David JS, Camors E, Carusio N, Vivien B, Andriantsitohaina R, Heymes C, Riou B (2007) Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 107:452–460. doi:10.1097/01.anes.0000278909.40408.24

    Article  CAS  PubMed  Google Scholar 

  2. Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105:3011–3016. doi:10.1161/01.CIR.0000019516.31040.2D

    Article  CAS  PubMed  Google Scholar 

  3. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339. doi:10.1038/416337a

    Article  CAS  PubMed  Google Scholar 

  4. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    Article  CAS  PubMed  Google Scholar 

  5. Berlin I, Grimaldi A, Bosquet F, Puech AJ (1986) Decreased beta-adrenergic sensitivity in insulin-dependent diabetic subjects. J Clin Endocrinol Metab 63:262–265. doi:10.1210/jcem-63-1-262

    Article  CAS  PubMed  Google Scholar 

  6. Birenbaum A, Tesse A, Loyer X, Michelet P, Andriantsitohaina R, Heymes C, Riou B, Amour J (2008) Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 109:1045–1053. doi:10.1097/ALN.0b013e31818d7e5a

    Article  CAS  PubMed  Google Scholar 

  7. Brodde OE, Zerkowski HR, Schranz D, Broede-Sitz A, Michel-Reher M, Schäfer-Beisenbusch E, Piotrowski JA, Oelert H (1995) Age-dependent changes in the beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in human right atrium. J Cardiovasc Pharmacol 26:20–26

    Article  CAS  PubMed  Google Scholar 

  8. Brunner F, Wölkart G (2003) Peroxynitrite-induced cardiac depression: role of myofilament desensitization and cGMP pathway. Cardiovasc Res 60:355–364. doi:10.1016/j.cardiores.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  9. Buttrick P, Malhotra A, Factor S, Greenen D, Leinwand L, Scheuer J (1991) Effect of aging and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 68:645–652. doi:10.1161/01.RES.68.3.645

    Article  CAS  PubMed  Google Scholar 

  10. Carter GS, Karl DW (1982) Inorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Methods 7:7–13. doi:10.1016/0165-022X(82)90031-8

    Article  CAS  PubMed  Google Scholar 

  11. Damy T, Ratajczak P, Robidel E, Bendall JK, Oliviero P, Boczkowski J, Ebrahimian T, Marotte F, Samuel JL, Heymes C (2003) Upregulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. FASEB J 17:1934–1936. doi:10.1096/fj.02-1208fje

    CAS  PubMed  Google Scholar 

  12. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367. doi:10.1016/S0140-6736(04)16048-0

    Article  CAS  PubMed  Google Scholar 

  13. Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajjar DP (2013) Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 305:H687–H698. doi:10.1152/ajpheart.00876.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dinçer UD, Bidasee KR, Güner S, Tay A, Ozçelikay AT, Altan VM (2001) The effect of diabetes on expression of beta1-, beta2-, and beta3-adrenoreceptors in rat hearts. Diabetes 50:455–461. doi:10.2337/diabetes.50.2.455

    Article  PubMed  Google Scholar 

  15. Dobson JG Jr, Fray J, Leonard JL, Pratt RE (2003) Molecular mechanisms of reduced beta-adrenergic signaling in the aged heart as revealed by genomic profiling. Physiol Genomics 15:142–147. doi:10.1152/physiolgenomics.00076.2003

    Article  CAS  PubMed  Google Scholar 

  16. Farrell SR, Howlett SE (2008) The age-related decrease in catecholamine sensitivity is mediated by beta(1)-adrenergic receptors linked to a decrease in adenylate cyclase activity in ventricular myocytes from male Fischer 344 rats. Mech Ageing Dev 129:735–744. doi:10.1016/j.mad.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  17. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y (2001) Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281:1200–1206. doi:10.1006/bbrc.2001.4493

    Article  CAS  PubMed  Google Scholar 

  18. Görg B, Qvartskhava N, Voss P, Grune T, Häussinger D, Schliess F (2007) Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett 581:84–90. doi:10.1016/j.febslet.2006.11.081

    Article  PubMed  Google Scholar 

  19. Guo Z, Zhang R, Li J, Xu G (2012) Effect of telmisartan on the expression of adiponectin receptors and nicotinamide adenine dinucleotide phosphate oxidase in the heart and aorta in type 2 diabetic rats. Cardiovasc Diabetol 11:94. doi:10.1186/1475-2840-11-94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359. doi:10.1007/s00395-013-0359-8

    Article  PubMed  Google Scholar 

  21. Halley CM, Houghtaling PL, Khalil MK, Thomas JD, Jaber WA (2011) Mortality rate in patients with diastolic dysfunction and normal systolic function. Arch Intern Med 171:1082–1087. doi:10.1001/archinternmed.2011.244

    Article  PubMed  Google Scholar 

  22. Hay I, Rich J, Ferber P, Burkhoff D, Maurer MS (2005) Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am J Physiol Heart Circ Physiol 288:H1203–H1208. doi:10.1152/ajpheart.00681.2004

    Article  CAS  PubMed  Google Scholar 

  23. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015

    Article  CAS  PubMed  Google Scholar 

  24. Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R (2010) Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 299:H446–H453. doi:10.1152/ajpheart.01034.2009

    Article  CAS  PubMed  Google Scholar 

  25. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199

    Article  CAS  PubMed  Google Scholar 

  26. Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH (2013) Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60:307–317. doi:10.1016/j.freeradbiomed.2013.02.021

    Article  CAS  PubMed  Google Scholar 

  27. Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100:5634–5639. doi:10.1073/pnas.1131756100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Isenberg G, Borschke B, Rueckschloss U (2003) Ca2+ transients of cardiomyocytes from senescent mice peak late and decay slowly. Cell Calcium 34:271–280. doi:10.1016/S0143-4160(03)00121-0

    Article  CAS  PubMed  Google Scholar 

  29. Jin CZ, Jang JH, Wang Y, Kim JG, Bae YM, Shi J, Che CR, Kim SJ, Zhang YH (2012) Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J Mol Cell Cardiol 52:1274–1281. doi:10.1016/j.yjmcc.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  30. Kamata K, Satoh T, Tanaka H, Shigenobu K (1997) Changes in electrophysiological and mechanical responses of the rat papillary muscle to alpha- and beta-agonist in streptozotocin-induced diabetes. Can J Physiol Pharmacol 75:781–788. doi:10.1139/y97-095

    Article  CAS  PubMed  Google Scholar 

  31. Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 95:11584–11589. doi:10.1073/pnas.95.20.11584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kamkin A, Kiseleva I, Isenberg G (2003) Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflugers Arch 446:220–231. doi:10.1007/s00424-003-1018-y

    CAS  PubMed  Google Scholar 

  33. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fradley M, Shoukas AA, Berkowitz DE, Hare JM (2003) Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329. doi:10.1161/01.RES.0000078171.52542.9E

    Article  CAS  PubMed  Google Scholar 

  34. Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 101:15944–15948. doi:10.1073/pnas.0404136101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH (2005) A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res 96:355–362. doi:10.1161/01.RES.0000155331.09458.A7

    Article  CAS  PubMed  Google Scholar 

  36. Knyushko TV, Sharov VS, Williams TD, Schöneich C, Bigelow DJ (2005) 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry 44:13071–13081. doi:10.1021/bi051226n

    Article  CAS  PubMed  Google Scholar 

  37. Kohr MJ, Wang H, Wheeler DG, Velayutham M, Zweier JL, Ziolo MT (2008) Targeting of phospholamban by peroxynitrite decreases beta-adrenergic stimulation in cardiomyocytes. Cardiovasc Res 77:353–361. doi:10.1093/cvr/cvm018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos D, Niessen HW (2003) Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56:194–199. doi:10.1136/jcp.56.3.194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kuo WN, Kanadia RN, Shanbhag VP, Toro R (1999) Denitration of peroxynitrite-treated proteins by ‘protein nitratases’ from rat brain and heart. Mol Cell Biochem 201:11–16. doi:10.1023/A:1007024126947

    Article  CAS  PubMed  Google Scholar 

  40. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107:15565–15570. doi:10.1073/pnas.1002178107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lakatta EG, Sollott SJ (2002) Perspectives on mammalian cardiovascular aging: humans to molecules. Comp Biochem Physiol, Part A Mol Integr Physiol 132:699–721. doi:10.1016/S1095-6433(02)00124-1

    Article  PubMed  Google Scholar 

  42. Le Douairon Lahaye S, Rebillard A, Zguira MS, Malardé L, Saïag B, Gratas-Delamarche A, Carré F, Bekono FR (2011) Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats. Mol Cell Biochem 347:53–62. doi:10.1007/s11010-010-0611-6

    Article  Google Scholar 

  43. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484. doi:10.1161/01.HYP.0000032031.30374.32

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Wu S, Li SY, Lopez FL, Du M, Kajstura J, Anversa P, Ren J (2007) Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol Heart Circ Physiol 292:H1398–H1403. doi:10.1152/ajpheart.01036.2006

    Article  CAS  PubMed  Google Scholar 

  45. Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25:337–341. doi:10.1007/s10974-004-6060-7

    Article  CAS  PubMed  Google Scholar 

  46. Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, Haworth RA (2005) Increased nitration of sarcoplasmic reticulum Ca2+ -ATPase in human heart failure. Circulation 111:988–995. doi:10.1161/01.CIR.0000156461.81529.D7

    Article  CAS  PubMed  Google Scholar 

  47. Lompre AM, Lambert F, Lakatta EG, Schwartz K (1991) Expression of sarcoplasmic reticulum Ca(2+)-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 69:1380–1388. doi:10.1161/01.RES.69.5.1380

    Article  CAS  PubMed  Google Scholar 

  48. Loyer X, Gómez AM, Milliez P, Fernandez-Velasco M, Vangheluwe P, Vinet L, Charue D, Vaudin E, Zhang W, Sainte-Marie Y, Robidel E, Marty I, Mayer B, Jaisser F, Mercadier JJ, Richard S, Shah AM, Bénitah JP, Samuel JL, Heymes C (2008) Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation 117:3187–3198. doi:10.1161/CIRCULATIONAHA.107.741702

    Article  CAS  PubMed  Google Scholar 

  49. Malan D, Levi RC, Alloatti G, Marcantoni A, Bedendi I, Gallo MP (2003) Cyclic AMP and cyclic GMP independent stimulation of ventricular calcium current by peroxynitrite donors in guinea pig myocytes. J Cell Physiol 197:284–296. doi:10.1002/jcp.10368

    Article  CAS  PubMed  Google Scholar 

  50. McGrady M, Reid CM, Shiel L, Wolfe R, Boffa U, Liew D, Campbell DJ, Prior D, Krum H (2013) N-terminal B-type natriuretic peptide and the association with left ventricular diastolic function in a population at high risk of incident heart failure: results of the SCReening Evaluation of the Evolution of New-Heart Failure Study (SCREEN-HF). Eur J Heart Fail 15:573–580. doi:10.1093/eurjhf/hft001

    Article  CAS  PubMed  Google Scholar 

  51. Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655. doi:10.1161/01.CIR.103.12.1649

    Article  CAS  PubMed  Google Scholar 

  52. Murdoch CE, Zhang M, Cave AC, Shah AM (2006) NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 71:208–215

    Article  CAS  PubMed  Google Scholar 

  53. Muzaffar S, Shukla N, Angelini G, Jeremy JY (2004) Nitroaspirins and morpholinosydnonimine but not aspirin inhibit the formation of superoxide and the expression of gp91phox induced by endotoxin and cytokines in pig pulmonary artery vascular smooth muscle cells and endothelial cells. Circulation 110:1140–1147. doi:10.1161/01.CIR.0000139851.50067.E4

    Article  CAS  PubMed  Google Scholar 

  54. Olukman M, Orhan CE, Celenk FG, Ulker S (2010) Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 24:415–423. doi:10.1016/j.jdiacomp.2010.02.001

    Article  PubMed  Google Scholar 

  55. Pi Y, Zhang D, Kemnitz KR, Wang H, Walker JW (2003) Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium. J Physiol 552:845–857. doi:10.1113/jphysiol.2003.045260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Post H, Schulz R, Gres P, Heusch G (2001) No involvement of nitric oxide in the limitation of beta-adrenergic inotropic responsiveness during ischemia. Am J Physiol Heart Circ Physiol 281:H2392–H2397

    CAS  PubMed  Google Scholar 

  57. Rueckschloss U, Quinn MT, Holtz J, Morawietz H (2002) Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22:1845–1851

    Article  CAS  PubMed  Google Scholar 

  58. Rueckschloss U, Villmow M, Klöckner U (2010) NADPH oxidase-derived superoxide impairs calcium transients and contraction in aged murine ventricular myocytes. Exp Gerontol 45:788–796. doi:10.1016/j.exger.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  59. Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59. doi:10.1161/01.RES.0000064585.95749.6D

    Article  CAS  PubMed  Google Scholar 

  60. Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359:1021–1044. doi:10.1098/rstb.2004.1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE (2011) Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 286:17640–17648. doi:10.1074/jbc.M110.203018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC Jr (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121:519–528. doi:10.1161/CIRCULATIONAHA.109.883777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Snook JH, Li J, Helmke BP, Guilford WH (2008) Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic Biol Med 44:14–23. doi:10.1016/j.freeradbiomed.2007.09.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Swartz DR, Zhang D, Yancey KW (1999) Cross bridge-dependent activation of contraction in cardiac myofibrils at low pH. Am J Physiol 276:H1460–H1467

    CAS  PubMed  Google Scholar 

  65. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y, Kass DA (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115:1221–1231. doi:10.1172/JCI21968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Takimoto Y, Aoyama T, Keyamura R, Shinoda E, Hattori R, Yui Y, Sasayama S (2000) Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat. Int J Cardiol 76:135–145. doi:10.1016/S0167-5273(00)00394-6

    Article  CAS  PubMed  Google Scholar 

  67. Tobise K, Ishikawa Y, Holmer SR, Im MJ, Newell JB, Yoshie H, Fujita M, Susannie EE, Homcy CJ (1994) Changes in type VI adenylyl cyclase isoform expression correlate with a decreased capacity for cAMP generation in the aging ventricle. Circ Res 74:596–603. doi:10.1161/01.RES.74.4.596

    Article  CAS  PubMed  Google Scholar 

  68. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205–1213

    Article  CAS  PubMed  Google Scholar 

  69. Viner RI, Huhmer AF, Bigelow DJ, Schoneich C (1996) The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite. Free Radic Res 24:243–259. doi:10.3109/10715769609088022

    Article  CAS  PubMed  Google Scholar 

  70. Wang H, Kohr MJ, Traynham CJ, Wheeler DG, Janssen PM, Ziolo MT (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294:C1566–C1575. doi:10.1152/ajpcell.00367.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang H, Viatchenko-Karpinski S, Sun J, Györke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Györke S, Ziolo MT (2010) Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 588:2905–2917. doi:10.1113/jphysiol.2010.192617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wichelhaus A, Russ M, Petersen S, Eckel J (1994) G protein expression and adenylate cyclase regulation in ventricular cardiomyocytes from STZ-diabetic rats. Am J Physiol 267:H548–H555

    CAS  PubMed  Google Scholar 

  73. Xiao RP, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, Lakatta EG, Koch WJ (1998) Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 101:1273–1282. doi:10.1172/JCI1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Zhang YH, Casadei B (2012) Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 52:341–350. doi:10.1016/j.yjmcc.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  76. Zhang ZS, Cheng HJ, Onishi K, Ohte N, Wannenburg T, Cheng CP (2005) Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart. J Pharmacol Exp Ther 315:1203–1211. doi:10.1124/jpet.105.089672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Roux Program of the Medical Faculty of the Martin Luther University Halle-Wittenberg (FKZ 16/13 to U.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Rueckschloss.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villmow, M., Klöckner, U., Heymes, C. et al. NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes. Basic Res Cardiol 110, 48 (2015). https://doi.org/10.1007/s00395-015-0506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0506-5

Keywords

Navigation