Skip to main content
Log in

Climate evolution in the Mediterranean Sea from an ocean circulation model

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The present and future evolution of the Mediterranean Sea hydrographical conditions are investigated using a Mediterranean Sea circulation model forced by a set of atmospheric fields at the sea surface and ocean fields at the neighbouring Atlantic Ocean west of the Strait of Gibraltar. The forcing fields originate from the Med-CORDEX, CMIP5 and CMPI6 data bases and the ORAS4 reanalyses. The simulations cover the period 1950–2100. The results confirm the Mediterranean Sea future warming and saltening but with a large spread among the simulations for this variable. The different contributions to the sea level change are estimated from the simulations. The total sea level is projected to increase by around 500–800 mm in 2100. The contribution of the dynamic part does not exceed 100 mm while that equilibrating the steric part in the Atlantic area is around 250–400 mm; the remaining part due to other contributions being of the order of 250–300 mm. The component which does not equilibrate the steric sea level in the Atlantic area is evaluated between −200 and + 200 mm. At the sea surface the simulations reproduce the northward extension of the Atlantic waters to the north of the Balearic Islands. The thermohaline circulation examined through an east–west vertical section is characterized by enhanced penetration of Atlantic waters at the upper layers and by a tongue of increased salinity in the Levantine Intermediate water deepening from east to west. While the overall density of the Mediterranean Sea is projected to decrease, the density difference between the inflowing and outflowing waters is projected to increase, mainly due to an increase in the temperature and a decrease in the salinity of the Atlantic waters, hence explaining the mass and heat enhanced exchange. It also gives an explanation to the projected increase of the basin sea level drop relative to that in the Atlantic Ocean reproduced in some of the results of the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

A link for the ORA4 data: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/ecmwf-ocean-reanalysis-system-4-oras4.html. The Med-CORDEX data base is available in: https://www.medcordex.eu. A link to CMIP5 data: https://esgf-node.llnl.gov/search/cmip5/. A link to CMIP6 data: https://esgf-node.llnl.gov/search/cmip6. The datasets generated during the current study are available from the corresponding author upon request.

References

  • Adloff F, Somot S, Sevault F, Jordà G, Aznar R, Déqué M, Herrmann M, Marcos M, Dubois C, Padorno E, Alvarez-Fanjul E, Gomis D (2015) Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45:2775–2802. https://doi.org/10.1007/s00382-015-2507-3

    Article  Google Scholar 

  • Adloff F, Jordà G, Somot S, Sevault F, Arsouze T, Meyssignac B, Li L, Planton S (2018) Improving sea level simulation in Mediterranean regional climate models. Clim Dyn 51:1167–1178

    Article  Google Scholar 

  • Alioua M, Harzallah A (2008) Imbrication d’un modèle de circulation des eaux près des côtes tunisiennes dans un modèle de circulation de la mer Méditerranée [Nesting of a water circulation model along the Tunisia coasts in a Mediterranean Sea model]. Bull Inst Nat Sci Technol Mer De Salammbô 35:169–176

    Google Scholar 

  • Artale V, Calmanti S, Carillo A et al (2010) An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740. https://doi.org/10.1007/s00382-009-0691-8

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF Ocean reanalysis ORAS4. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  • Bayoumy M, Skliris N (2022) Steric and atmospheric contributions to interannual sea level variability in the eastern Mediterranean sea over 1993–2019? Oceanologia 64:50–62. https://doi.org/10.1016/j.oceano.2021.09.001

    Article  Google Scholar 

  • Brankart J.M, Pinardi N (2001) Abrupt cooling of the Mediterranean Levantine intermediate water at the beginning of the 1980s: observational evidence and model simulation. J Phys Oceanogr 31:2307–2320. doi:https://doi.org/10.1175/1520-0485(2001)031<2307:ACOTML>2.0.CO;2

  • Brasseur P, Beckers JM, Brankart JM, Schoenauen R (1996) Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of an historical data set. Deep Sea Res 43:159–192

    Article  Google Scholar 

  • Calafat FM, Gomis D (2009) Reconstruction of Mediterranean Sea level fields for the period 1945–2000. Glob Planet Change 66(3–4):225–234. https://doi.org/10.1016/j.gloplacha.2008.12.015

    Article  Google Scholar 

  • Calafat FM, Marcos M, Gomis D (2010) Mass contribution to the Mediterranean Sea level variability for the period 1948–2000. Global Planet Change 73:193–201. https://doi.org/10.1016/j.gloplacha.2010.06.002

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2012a) Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022. https://doi.org/10.1029/2012JC008285

    Article  Google Scholar 

  • Calafat FM, Jordà G, Marcos M, Gomis D (2012b) Comparison of Mediterranean sea level variability as given by three baroclinic models. J Geophys Res 117:C02009. https://doi.org/10.1029/2011JC007277

    Article  Google Scholar 

  • Candela J, Winant CD, Bryden HL (1989) Meteorologically forced subinertial flows through the Strait of Gibraltar. J Geophys Res 94(C9):12667–12679. https://doi.org/10.1029/JC094iC09p12667

    Article  Google Scholar 

  • Carillo A, Sannino G, Artale V, Ruti PM, Calmanti S, Dell’Aquila A (2012) Steric sea level rise over the Mediterranean Sea: present climate and scenario simulations. Clim Dyn 39:2167–2184. https://doi.org/10.1007/s00382-012-1369-1

    Article  Google Scholar 

  • Cavicchia L, Gualdi S, Sanna A, Oddo P (2015) The regional ocean—atmosphere coupled model COSMO-NEMO_MFS. CMCC research paper RP0254. https://www.cmcc.it/wp-content/uploads/2015/04/rp0254-csp-04-2015.pdf

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change supplementary material. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available from www.climatechange2013.org and www.ipcc.ch

  • Conte D, Gualdi P, Leonello P (2020) Effect of model resolution on intense and extreme precipitation in the Mediterranean region. Atmosphere 11(7):699. https://doi.org/10.3390/atmos11070699

    Article  Google Scholar 

  • Darmaraki S, Somot S, Sevault F, Nabat P, Cabos Narvaez WD, Cavicchia L, Djurdjevic V, Li L, Sannino G, Sein DV (2019) Future evolution of marine heatwaves in the Mediterranean Sea. Clim Dyn 53:1371–1392. https://doi.org/10.1007/s00382-019-04661-z

    Article  Google Scholar 

  • Dell’Aquila A, Mariotti A, Bastin S et al (2018) Evaluation of simulated decadal variations over the Euro-Mediterranean region from ENSEMBLES to Med-CORDEX. Clim Dyn 51:857–876. https://doi.org/10.1007/s00382-016-3143-2

    Article  Google Scholar 

  • Djurdjevic V, Rajkovic B (2008) Verification of a coupled atmosphere-ocean model using satellite observations over the Adriatic Sea. Ann Geophys 26:1935–1954

    Article  Google Scholar 

  • Döscher R, Acosta M, Alessandri A, Anthoni P, Arsouze T et al (2022) The EC-Earth3 earth system model for the climate model intercomparison project 6. Geosci Model Dev 15:2973–3020. https://doi.org/10.5194/gmd-15-2973-2022

    Article  Google Scholar 

  • Gonzalez NM, Waldman R, Sannino G, Giordani H, Somot S (2023) Understanding tidal mixing at the Strait of Gibraltar: a high-resulution model approach. Prog Oceanogr 212:102980. https://doi.org/10.1016/j.pocean.2023.102980

    Article  Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J Geophys Res 99(C6):12767–12771

    Article  Google Scholar 

  • Griffies SM, Danabasoglu G, Durack PJ, Adcroft AJ, Balaji V, Böning CW et al (2016) OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci Model Dev 9:3231–3296. https://doi.org/10.5194/gmd-9-3231-2016

    Article  Google Scholar 

  • Gualdi S, Somot S, May W, Castellari S, Déqué M, Adani M, Artale V, Bellucci A, Breitgand AW, Carillo A, Cornes R, Dell’Aquila A, Dubois C, Efthymiadis D, Elizalde A, Gimeno L, Goodess CM, Harzallah A, Krichak SO, Kuglitsch FG, Leckebusch GC, L’Heveder B, Li L, Lionello P, Luterbacher J, Mariotti A, Navarra A, Nieto R, Nissen KM, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Sevault F, Struglia MV, Toreti A, Ulbrich U, Xoplaki E (2013) Future climate projections. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean, vol 1. Springer, Dordrecht, pp 53–118

    Chapter  Google Scholar 

  • Hallberg R, Adcroft A, Dunne JP, Krasting JP, Stouffer RJ (2013) Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation. J Formul. https://doi.org/10.1175/JCLI-D-12-00506.1

    Article  Google Scholar 

  • Harzallah A (2009) Flow variability in the Strait of Gibraltar: the Mediterranean adjustment to tidal forcing. Deep-Sea Res I 56:459–470

    Article  Google Scholar 

  • Harzallah A, Alioua M, Li L (2014) Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model. Tellus A 66:23871. https://doi.org/10.3402/tellusa.v66.23871

    Article  Google Scholar 

  • Harzallah A, Jordà G, Duboi C, Sannino G, Carillo A, Li L, Arsouze T, Cavicchia L, Beuvier J, Akhtar N (2018) Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Clim Dyn 51:1145–1165. https://doi.org/10.1007/s00382-016-3363-5

    Article  Google Scholar 

  • Huang RX, Jin X (2022) Sea surface elevation and bottom pressure anomalies due to thermohaline forcing. Part I: isolated perturbations. J Phys Oceanogr 32:2131–2150

    Article  Google Scholar 

  • IPCC (2021) Climate Change 2021: the physical science basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R (eds) Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 2391. doi: https://doi.org/10.1017/9781009157896

  • Jordà G, Gomis D (2013) On the interpretation of the steric and mass components of sea level variability: the case of the Mediterranean basin. J Geophys Res Oceans 118:953–963. https://doi.org/10.1002/jgrc.20060

    Article  Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marozke J, Matei D, Mikolajewicz U, Notz D, von Storch J-S (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI Earth System Model. J Adv Model Earth Sys 5:422–446. https://doi.org/10.1002/jame.20023

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Losch M, Adcroft A, Campin J-M (2004) How sensitive are coarse general circulation models to fundamental approximations in the equations of motion? J Phys Oceanogr 34:306–319. https://doi.org/10.1175/1520-0485(2004)034%3c0306:HSACGC%3e2.0.CO;2

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Marcos M, Tsimplis MN (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res Oceans 113:C12028

    Article  Google Scholar 

  • Mellor GL, Blumberg AF (1985) Modelling vertical and horizontal diffusivities with the sigma coordinate system. Mon Weather Rev 113:1279–1383

    Article  Google Scholar 

  • Mellor GL, Ezer T (1995) Sea level variations induced by heating and cooling: an evaluation of the Boussinesq approximation in ocean models. J Geophys Res 100(C10):20565–20577

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of turbulent closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Menemenlis D, Fukumori I, Lee T (2007) Atlantic to Mediterranean sea level difference driven by winds near Gibraltar strait. J Phys Oceangr 37:359–376. https://doi.org/10.1175/JPO3015.1

    Article  Google Scholar 

  • Mogensen K, Alonso Balmaseda M, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System4. ECMWF Tech Memo 668:59

    Google Scholar 

  • Myers P, Haines K (2002) Stability of the Mediterranean’s thermohaline circulation under modified surface evaporative fluxes. J Geophys Res 107(C3):3021. https://doi.org/10.1029/2000JC000550

    Article  Google Scholar 

  • Parras-Berrocal IM, Vazquez R, Cabos W, Sein D, Mañanes R, Perez-Sanz J, Izquierdo A (2020) The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Sci 16:743–765. https://doi.org/10.5194/os-16-743-2020

    Article  Google Scholar 

  • Parras-Berrocal IM, Vazquez R, Cabos W, Sein DV, Álvarez O, Bruno M, Izquierdo A (2022) Surface and intermediate water changes triggering the future collapse of deep water formation in the North Western Mediterranean. Geophys Res Lett 49:e2021GL095404. https://doi.org/10.1029/2021GL095404

  • Parras-Berrocal IM, Vazquez R, Cabos W, Sein DV, Alvarez O, Bruno M, Izquierdo A (2023) Dense water formation in the eastern Mediterranean under a global warming scenario. Ocean Sci 19:941–952. https://doi.org/10.5194/os-19-941-2023

    Article  Google Scholar 

  • Payne AJ, Nowicki S, Abe-Ouchi A, Agosta C, Alexander P, Albrecht T et al (2021) Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys Res Lett 48:16. https://doi.org/10.1029/2020GL091741

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2014) Mechanisms of global-mean steric sea level change. J Clim 27:824–834. https://doi.org/10.1175/JCLI-D-13-00373.1

    Article  Google Scholar 

  • Pinardi N, Cessi P, Borile F, Wolfe CLP (2019) The Mediterranean Sea overturning circulation. J Phys Oceanogr 49(7):1699–1721. https://doi.org/10.1175/JPO-D-18-0254.1

    Article  Google Scholar 

  • Roether W, Manca BB, Klein B, Bregant D, Georgopoulos D, Beitzel V, Kovacevic V, Luchetta A (1996) Recent changes in the Eastern Mediterranean deep waters. Science 271:333–335. https://doi.org/10.1126/science.271.5247.333

    Article  CAS  Google Scholar 

  • Ross T, Garrett C, Le Traon P-Y (2000) Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Let 27:2949–2952

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105(C10):23927–23942. https://doi.org/10.1029/2000JC900089

    Article  Google Scholar 

  • Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E et al (2016) MED-CORDEX initiative for Mediterranean climate studies. BAMS. https://doi.org/10.1175/BAMS-D-14-00176.1

    Article  Google Scholar 

  • Sampatakaki A, Zervakis V, Mamoutos I, Tragou E, Gogou A, Triantaphyllou M, Skliris N (2021) Investigation of the inherent variability of the Mediterranean Sea under contrasting extreme climatic conditions. Front Mar Sci 8:656737. https://doi.org/10.3389/fmars.2021.656737

    Article  Google Scholar 

  • Sánchez-Román A, García-Lafuente J, Delgado J, Sánchez-Garrido JC, Naranjo C (2012) Spatial and temporal variability of tidal flow in the Strait of Gibraltar. J Mar Syst 98–99:9–17

    Article  Google Scholar 

  • Sannino G, Carillo A, Iacono R, Napolitano E, Palma M, Pisacane G, Struglia MV (2022) Modelling present and future climate in the Mediterranean Sea: a focus on sea-level change. Clim Dyn 59:357–391. https://doi.org/10.1007/s00382-021-06132-w

    Article  Google Scholar 

  • Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009) An eddy-permitting model of the Mediterranean sea with a two-way grid refinement at the Strait of Gibraltar. Ocean Model 30(1):56–72

    Article  Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci B, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24:4368–4384

    Article  Google Scholar 

  • Slangen ABA, Carson M, Katsman CA et al (2014) Projecting twenty-first century regional sea-level changes. Clim Change 124:317–332. https://doi.org/10.1007/s10584-014-1080-9

    Article  CAS  Google Scholar 

  • Slangen ABA, Adloff F, Jevrejeva S, Leclercq PW, Marzeion B, Wada Y, Winkelmann R (2017a) A review of recent updates of sea-level projections at global and regional scales. Surv Geophys 38–1:385–406. https://doi.org/10.1007/s10712-016-9374-2

    Article  Google Scholar 

  • Slangen ABA, Meyssignac B, Agosta C, Champollion N, Church JA, Fettweis X, Ligtenberg SRM, Marzeion B, Melet A, Palmer MD, Richter K, Roberts CD, Spada G (2017b) Evaluating model simulations of Twentieth-Century sea level rise. Part I: global mean sea level change. J Clim 30:8539–8563. https://doi.org/10.1175/JCLI-D-17-0110.1

    Article  Google Scholar 

  • Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim Dyn 27:851–879. https://doi.org/10.1007/s00382-006-0167-z

    Article  Google Scholar 

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B, Anders I, Bucchignani E, Davin EL, Demory ME, Dosio A, Feldmann H, Früh B, Geyer B, Keuler K, Lee D, Li D, van Lipzig NPM, Min SK, Panitz HJ, Rockel B, Schär C, Steger C, Thiery W (2021) COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geosci Model Dev 14:5125–5154. https://doi.org/10.5194/gmd-14-5125-2021

    Article  CAS  Google Scholar 

  • Soto-Navarro J, Jordá G, Amores A et al (2020) Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble. Clim Dyn 54:2135–2165. https://doi.org/10.1007/s00382-019-05105-4

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Storto A, Bonaduce A, Feng X, Yang C (2019) Steric sea level changes from ocean reanalyses at global and regional scales. Water 11:1987. https://doi.org/10.3390/w11101987

    Article  Google Scholar 

  • Stratford K, Haines K (2002) Modelling changes in Mediterranean thermohaline circulation 1987–1995. J Mar Syst 33–34:51–62. https://doi.org/10.1016/S0924-7963(02)00052-0

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thorpe RB, Bigg GR (2000) Modelling the sensitivity of Mediterranean Outflow to anthropogenically forced climate change. Clim Dyn 16(5):355–368. https://doi.org/10.1007/s003820050333

    Article  Google Scholar 

  • Voldoire A, Sánchez-Gomez E, Salas y Mélia D, et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Vorosmarty CJ, BM Fekete, BA Tucker (1998) Global River Discharge, 1807-1991, Version 1.1 (RivDIS). ORNL DAAC, Oak Ridge, Tennessee, USA. Doi: 10.3334/ORNLDAAC/199

  • Wüst G (1961) On the vertical circulation of the Mediterranean Sea. J Geophys Res 66:3261–3271. https://doi.org/10.1029/JZ066i010p03261

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the Med-CORDEX Phase 1 initiative supported by the HyMeX programme. It was partly funded by the Ministry of Higher Education and Scientific Research, Tunisia, PrevTun project, LR16INSTM04-01. The forcing fields to the Mediterranean Sea model originate from the ORAS4 reanalyses and Med-CORDEX, CMIP5 and CMIP6 data bases. The authors are very grateful to reanalyses and simulation authors and to model output data providers.

Funding

This work was partly funded by the Ministry of Higher Education and Scientific Research, Tunisia, PrevTun project, LR16INSTM04-01.

Author information

Authors and Affiliations

Authors

Contributions

AH is the main contributor to the study conception. Both authors contributed to the study design. Data collection and analysis and numerical simulations were performed by both authors. The first draft of the manuscript was written by AH. Both authors commented and added modifications on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Harzallah.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2525 KB)

Appendix

Appendix

See Table 

Table 5 List of numerical models that were used to provide the forcing data of the simulations carried out in this study

5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabnoun, R., Harzallah, A. Climate evolution in the Mediterranean Sea from an ocean circulation model. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07152-y

Keywords

Navigation