Skip to main content

Advertisement

Log in

Either IOD leading or ENSO leading triggers extreme thermohaline events in the central tropical Indian Ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Based on 12 years (2007–2018) of salinity data from the Array for Real-Time Geostrophic Oceanography (Argo) dataset, we found significant positive salinity anomalies in the upper layer of the central tropical Indian Ocean from autumn 2010 to spring 2011 and from autumn 2016 to spring 2017. We used wind, precipitation, outgoing longwave radiation and ocean current data from satellites and reanalysis datasets to analyze the atmospheric conditions, ocean dynamic processes and salinity budget associated with these high salinity events. Our results suggest that surface buoyancy fluxes are not the dominant factor affecting the positive salinity anomalies and that ocean dynamic processes have a more important role. Under the influence of the La Niña events and strong negative Indian Ocean dipole in 2010 and 2016, positive salinity anomalies appeared in the eastern Indian Ocean at the end of 2010 and 2016 as a result of strong westerlies and positive zonal currents. However, because the La Niña event in 2010 was stronger than that in 2016, the salinity anomalies in 2010 were also stronger and the decrease in the following year was both stronger and lasted longer, meaning that the salinity anomalies weakened only gradually. The maximum value of the salinity anomalies in 2011 therefore appeared in January, whereas in 2017 the salinity anomalies first decreased and then increased, with the largest anomalies in March. Salinity budget analyses showed that ocean advection was the main factor leading to the variations in the salinity anomaly during these two periods and that the changes in the zonal velocity in the zonal advection anomalies had the greatest impact. Zonal advection was positive and strongest at the end of 2010 and negative in early 2011, but weakly positive at the end of 2016. In early 2017, the zonal advection was first negative, then became positive and strengthened in spring, so the salinity anomalies in spring 2017 were higher than those in 2011. The freshwater flux had a small, negative effect on the positive salinity anomalies for these two events. The mutual effects of the horizontal advection and the freshwater flux led to high salinity anomalies. The high salinity anomalies reflect the response of the upper ocean to climate events and may influence regional air–sea interactions and large-scale processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

Download references

Funding

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20060500), the National Natural Science Foundation of China (Grant No. 92158204), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0102), the Open Project Program of the State Key Laboratory of Tropical Oceanography (LTOZZ2102; LTOZZ2101), the National Natural Science Foundation of China (42176026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, D., Zu, T. et al. Either IOD leading or ENSO leading triggers extreme thermohaline events in the central tropical Indian Ocean. Clim Dyn 60, 2113–2129 (2023). https://doi.org/10.1007/s00382-022-06413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06413-y

Keywords

Navigation