Skip to main content

Advertisement

Log in

Evaluation of extreme precipitation over Asia in CMIP6 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Based on four reanalyses or gridded data sets (ERA5, 20CR, APHRODITE and REGEN), we provide an overview of 23 Historical and 7 HighResMIP experiments’ performance from the Coupled Model Intercomparison Project Phase 6 (CMIP6) (for short, 6-Hist, HighRes) in simulating seven extreme precipitation indices over Asia defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). We compare them with 28 Historical experiments in CMIP5 (5-Hist). CMIP5 and CMIP6 models are generally able to reproduce extreme precipitation’s spatial distribution and their trend patterns in comparison to the benchmark data set (APHRODITE). The overall performance of individual model is summarized by a “portrait” diagram based on four statistics for each index. We divide all 58 models into three groups (A, the top 20%; B, the median 60% and C group, the last 20%) according to MR rankings (the comprehensive ranking measure). Based on the “portrait” diagram and MR rankings, models that perform relatively well for all seven extreme precipitation indices include HadCM3, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES from 5-Hist, EC-Earth3, EC-Earth3-Veg from 6-Hist and ECMWF-IFS-HR, ECMWF-IFS-LR, ECMWF-IFS-MR from HighRes. The simulated performance of CMIP6 is polarized, for the top four and the last five ranking models are both from CMIP6. Compared with the counterpart models in CMIP6 and CMIP5, the improvement of PCC (pattern correlation coefficient) is more obvious. Furthermore, the dry biases of CMIP6 (both 6-Hist and HighRes) in Southern China and India and the wet biases of CMIP6 in Tibet are reduced compared to CMIP5. This may benefit from the improvement that CMIP6 models can capture the characteristics of meridional moisture flux convergence, and improve the overestimation or underestimation of meridional and zonal specific humidity eddies compared to CMIP5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The daily mean gridded precipitation from APHRODITE were acquired from their Web site at https://www.chikyu.ac.jp/precip/english/products.html. The ERA5 reanalyses data were acquired from the website of the European Centre for Medium Range Weather Forecasts:https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form. The REGEN data are obtained from this Web site https://researchdata.ands.org.au/rainfall-estimates-gridded-station-v10/. The 20th Century Reanalysis Project can be available from https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html. The JRA55 data can be available from ftp://ds.data.jma.go.jp. The CMIP5 data are obtained from https://esgf-node.llnl.gov/projects/cmip5/. The CMIP6 data are obtained from https://esgf-node.llnl.gov/projects/cmip6/.

Code availability

Not applicable.

References

  • Afshin S, Asghar A, Luca B (2019) Reliability of reanalysis and remotely sensed precipitation products for hydrological simulation over the Sefidrood River Basin Iran. Hydrol Sci J 65:112. https://doi.org/10.1080/02626667.2019.1691217

    Article  Google Scholar 

  • Ajibola FO, Zhou BT, Gnitou GT, Onyejuruwa A (2020) Evaluation of the performance of CMIP6 HighResMIP on West African precipitation. Atmosphere 11(10):1053. https://doi.org/10.3390/atmos11101053

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005jd006290

    Article  Google Scholar 

  • Amato R, Steptoe H, Buonomo E, Jones R (2019) High-resolution history: downscaling China’s climate from the 20CRv2c reanalysis. J Appl Meteorol Climatol 58:2141–2157. https://doi.org/10.1175/JAMC-D-19-0083.s1

    Article  Google Scholar 

  • Andermann C, Bonnet S, Gloaguen R (2011) Evaluation of precipitation data sets along the Himalayan front. Geochem Geophys Geosyst 12:Q07023. https://doi.org/10.1029/2011GC003513

    Article  Google Scholar 

  • Bador M, Boé J, Terray L, Alexander LV, Baker A, Bellucci A et al (2020) Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. J Geophys Res 125:e2019JD032184. https://doi.org/10.1029/2019JD032184

    Article  Google Scholar 

  • Boer GJ, Smith DM, Cassou C et al (2016) The decadal climate prediction project (DCPP) contribution to CMIP6. Geosci Model Dev 9:3751–3777

    Article  Google Scholar 

  • Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res Atmos 115

  • Chen L, Frauenfeld OW (2014) A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J Geophys Res Atmos 119:5767–5786. https://doi.org/10.1002/2013JD021190

    Article  Google Scholar 

  • Chen WL, Jiang Z, Li L (2011) Probabilistic projections of climate change over China under the SRES A1B scenariousing 28 AOGCMs. J Clim 24:4741–4756. https://doi.org/10.1175/2011JCLI4102.1

    Article  Google Scholar 

  • Chen XL, Wu PL, Roberts MJ, Zhou TJ (2018) Potential underestimation of future Mei-Yu rainfall with coarse-resolution climate models. J Clim 31:6711–6727

    Article  Google Scholar 

  • Chou C, Lan CW (2012) Changes in the annual range of precipitation under global warming. J Clim 25:222–235

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Demory ME, Berthou S, Fernández J et al (2020) European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geosci Model Dev 13:5485–5506. https://doi.org/10.5194/gmd-13-5485-2020

    Article  Google Scholar 

  • Dong TY, Dong WJ, Guo Y et al (2018) Future temperature changes over the critical Belt and Road region based on CMIP5 models. Adv Clim Chang Res 9(1):57–65

    Article  Google Scholar 

  • Ebita A et al (2011) The Japanese 55-year Reanalysis “JRA-55”: an interim report. Sci Online Lett Atmos 7:149–152. https://doi.org/10.2151/sola.2011-038

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Gillett NP, Shiogama H, Funke B et al (2016) The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci Model Dev 9:3685–3697

    Article  Google Scholar 

  • Gleason KL, Lawrimore JH, Levinson DH, Karl TR, Karoly DJ (2008) A Revised U.S. Clim Extrem Index J Clim 21:2124–2137. https://doi.org/10.1175/2007jcli1883.1

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104

    Google Scholar 

  • Haarsma RJ, Roberts MJ, Vidale PL et al (2016) High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci Model Dev 9:4185–4208

    Article  Google Scholar 

  • He WP, Zhao SS (2018) Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation. Clim Dyn 50(1):493–505. https://doi.org/10.1007/s00382-017-3622-0

    Article  Google Scholar 

  • He WP, Zhao SS, Wu Q, Jiang YD, Wan SQ (2019) Simulating evaluation and projection of the climate zones over China by CMIP5 models. Clim Dyn 52(5):2597–2612. https://doi.org/10.1007/s00382-018-4410-1

    Article  Google Scholar 

  • IPCC. Climate change (2013) the physical science basis: contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 1–1535 http://www.ipcc.ch/report/ar5/wg1/

  • Jiang T, Kundzewicz ZW (2008) Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int J Climatol 28:1471–1481

    Article  Google Scholar 

  • Jiang D, Tian Z (2013) East Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 models. Chin Sci Bull 58:1427–1435

    Article  Google Scholar 

  • Jiang ZH, Ding YG, Chen WL (2007) Projection of precipitation extremes for the 21st Century over China. Adv Clim Chang Res 3:202–207

    Google Scholar 

  • Jiang ZH, Chen WL, Song J, Wang J (2009) Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models. Chin J Atmos Sci 33:109–120 (in Chinese)

    Google Scholar 

  • Jiang ZH, Song J, Li L, Chen W, Wang Z, Wang J (2011) Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim Change 110:385–401. https://doi.org/10.1007/s10584-011-0090-0

    Article  Google Scholar 

  • Jiang ZH, Song J, Li L, Chen WL, Wang ZF, Wang J (2012) Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim Change 110:385–401

    Article  Google Scholar 

  • Jiang ZH, Li W, Xu J, Li L (2015) Extreme precipitation indices over China in CMIP5 models Part I: model evaluation. J Clim 28(21):8603–8619. https://doi.org/10.1175/JCLI-D-15-0099.1

    Article  Google Scholar 

  • Kageyama M, Braconnot P, Harrison SP et al (2018) The PMIP4 contribution to CMIP6. Part 1: overview and over-arching analysis plan. Geosci Model Dev 11:1033–1057

    Article  Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Clim Change 42:3–7

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48

    Article  Google Scholar 

  • Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621. https://doi.org/10.1175/JCLI-D-14-00585.1

    Article  Google Scholar 

  • Lai S, Xie ZW, Bueh C, Gong YF (2020) Fidelity of the APHRODITE dataset in representing extreme precipitation over Central Asia. Atmos Sci Adv. https://doi.org/10.1007/s00376-020-0098-3

  • Lau NC, Ploshay JJ (2009) Simulation of synoptic- and subsynoptic-scale phenomena associated with the East Asian Summer Monsoon using a high-resolution GCM. Mon Wea Rev 137:137–160

    Article  Google Scholar 

  • Li W, Jiang ZH, Xu J, Li L (2015) Extreme precipitation indices over China in CMIP5 models, part I: model evaluation. J Clim 28:8603–8617. https://doi.org/10.1175/JCLI-D-15-0099.11

    Article  Google Scholar 

  • Li C, Zwiers F, Zhang X, Li G (2018) How much information is required to well-constrain local estimates of future precipitation extremes? Earth’s Future. https://doi.org/10.1029/2018ef001001

    Article  Google Scholar 

  • Li J, Yang Y, Zhu Z (2020) Application of MJO dynamics-oriented diagnostics to CMIP5 models. Theor Appl Climatol 141(2):673–684

    Article  Google Scholar 

  • Lin L, Xu YY, Wang Z, Diao C, Dong W, Xie S-P (2018) Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys Res Lett 45:7857–7865. https://doi.org/10.1029/2018gl078308

    Article  Google Scholar 

  • Lin L, Gettelman A, Xu YY, Wu CL, Wang ZL, Rosenbloom N, Bates SC, Dong WJ (2019) CAM6 simulation of mean and extreme precipitation over Asia: sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci Model Dev 12:3773–3793. https://doi.org/10.5194/gmd-12-3773-2019

    Article  Google Scholar 

  • Meehl GA, Moss R, Taylor KE et al (2014) Climate model intercomparisons: preparing for the next phase. EOS Trans Am Geophys Union 95(9):77–84

    Article  Google Scholar 

  • Ou T, Chen D, Linderholm HW, Jeong JH (2013) Evaluation of global climate models in simulating extreme precipitation in China. Tellus A 65:19799. https://doi.org/10.3402/tellusa.v65i0.19799

    Article  Google Scholar 

  • Peng D, Zhou T, Zhang L, Zhang W, Chen X (2019) Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim Dyn 54:543–560. https://doi.org/10.1007/s00382-019-05014-6

    Article  Google Scholar 

  • Roberts MJ, Camp J, Seddon J, Vidale PL, Hodges K, Vannière B et al (2020a) Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. J Clim 33:2557–2583

    Article  Google Scholar 

  • Roberts MJ, Camp J, Seddon J, Vidale PL, Hodges K, Vannière B et al (2020b) Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophys Res Lett. https://doi.org/10.1029/2020GL088662

    Article  Google Scholar 

  • Senviratne SI (2012) Changes in climate extremes and their impacts on the natural physical environment. In: IPCC Special Report on Extremes, 109–230

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res-Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 1 Model evaluation in the present climate. J Geophys Res 118:1716–1733. https://doi.org/10.1002/jgrd.50203

    Article  Google Scholar 

  • Simpkins G (2017) Progress in climate modeling. Nat Clim Change 7:684–685

    Article  Google Scholar 

  • Steefan C, Markus G, Lisa V, Markus Z et al (2019) Rainfall Estimates on a Gridded Network (REGEN): a globalland-based gridded dataset of daily precipitation from 1950–2013. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2018-595

  • Stouffer RJ, Eyring V, Meehl GA et al (2017) CMIP5 scientific gaps and recommendations for CMIP6. Bull Am Meteor Soc 98:95–105. https://doi.org/10.1175/BAMS-D-15-00013.1

    Article  Google Scholar 

  • Sui Y, Jiang DB, Tian ZP (2013) Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theoret Appl Climatol 113:599–610

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thomas MA, Devasthale A, L’Ecuyer T, Wang S, Koenigk T, Wyser K (2019) Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations. Geosci Model Dev 12:3759–3772. https://doi.org/10.5194/gmd-12-3759-2019

    Article  Google Scholar 

  • Tian D, Guo Y, Dong WJ (2015) Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv Atmos Sci 32:487–496

    Article  Google Scholar 

  • Wang Y (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:10. https://doi.org/10.1029/2005gl022574

    Article  Google Scholar 

  • Wang J, Chen Y, Tett SFB, Yan Z, Zhai P, Feng J, Xia J (2020) Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat commun 11:528. https://doi.org/10.1038/s41467-019-14233-8

    Article  Google Scholar 

  • Yang S, Feng J, Dong W, Chou J (2014) Analyses of extreme climate events over china based on CMIP5 historical and future simulations. Adv Atmos Sci 31:1209–1220. https://doi.org/10.1007/s00376-014-3119-2

    Article  Google Scholar 

  • Yang SL, Dong WJ, Chou JM et al (2015) A brief introduction to BNU-HESM1.0 and its earth surface temperature simulations. Adv Atmos Sci 32(12):1683–1688. https://doi.org/10.1007/s00376-015-5050-6

    Article  Google Scholar 

  • Yao JC, Zhou TJ, Guo Z, Chen XL, Zou LW, Sun Y (2017) Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J Clim 30:8825–8840

    Article  Google Scholar 

  • Yatagai A, Arakawa O, Kamiguchi K et al (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola 5:137–140. https://doi.org/10.2151/sola.2009-035

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O et al (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 93(9):1401–1415. https://doi.org/10.1175/BAMS-D-11-00122

    Article  Google Scholar 

  • Zhai PM, Pan XH (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett. https://doi.org/10.1029/2003GL018004

    Article  Google Scholar 

  • Zhai PM, Sun A, Ren F, Liu X, Gao B, Zhang Q (1999) Changes of climate extremes in China. Clim Change 42:203–218

    Article  Google Scholar 

  • Zhai PM, Zhang XB, Wan H, Pan XH (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC et al (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2(6):851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  • Zhao SS, He WP (2015) Evaluation of the performance of the Beijing Climate Centre Climate System Model 1.1(m) to simulate precipitation across China based on long-range correlation characteristics. J Geophys Res. https://doi.org/10.1002/2015JD024059

    Article  Google Scholar 

  • Zhao ZC, Luo Y, Huang JB (2016) Design of CMIP6. Clim Change Res 12(3):258–260 (in Chinese)

    Google Scholar 

  • Zhao ZC, Luo Y, Huang JB (2018a) The detection of the CMIP5 climate model to see the development of CMIP6 Earth system models. Clim Change Res 14(6):643–648 (in Chinese)

    Google Scholar 

  • Zhao SS, He WP, Jiang YD (2018b) Evaluation of NCEP-2 and CFSR reanalysis seasonal temperature data in China using detrended fluctuation analysis. Int J Climatol 38(1):252–263. https://doi.org/10.1002/joc.5173

    Article  Google Scholar 

  • Zhou S, L’Heureux M, Weaver S, Kumar A (2012) A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Clim Dyn 38:1459–1471

    Article  Google Scholar 

  • Zhou TJ, Turner AG, Kinter JL et al (2016) GMMIP (v1.0) contribution to CMIP6: global monsoons model inter-comparison project. Geosci Model Dev 9:3589–3604

    Article  Google Scholar 

  • Zhou TJ, Zou LW, Chen XL (2019) Commentary on the coupled model intercomparison project phase 6 (CMIP6). Clim Change Res 15(5):445–456

    Google Scholar 

  • Zhou TJ, Chen XL, Wu B (2019) Frontier issues on climate change science for supporting future earth. Sci Bull 64:1967–1974. https://doi.org/10.1360/N972018-00818

    Article  Google Scholar 

  • Zhu HH, Jiang ZH, Li J, Li W, Sun CX, Li L (2020) Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv Atmos Sci. https://doi.org/10.1007/s00376-020-9289-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by National Key R&D Program of China (2016YFA0602703), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0103), the China Postdoctoral Science Foundation (Grant no. 2020M672942), the Fundamental Research Funds for the Central Universities from Sun Yat-Sen University (Grant no. 19lgpy31). We express sincere gratitude to the reviewers for their constructive comments and suggestions. We also wish to thank all data providers and the modeling groups for producing and making their model outputs available.

Funding

The National Key R&D Program of China (2016YFA0602703), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0103), the China Postdoctoral Science Foundation (Grant no. 2020M672942), the Fundamental Research Funds for the Central Universities from Sun Yat-Sen University (Grant no. 19lgpy31).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Wenjie Dong.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim Dyn 57, 1751–1769 (2021). https://doi.org/10.1007/s00382-021-05773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05773-1

Keywords

Navigation