Skip to main content
Log in

A multimodel intercomparison of resolution effects on precipitation: simulations and theory

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961–2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov–Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolution over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. This theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. OURANOS

  2. ICTP

  3. An increment is essentially a discrete gradient without the length scale in the denominator; it is the difference between two points in a field that are at a distance \(\Delta x\) apart.

References

  • Adam JC, Clark EA, Lettenmaier DP, Wood EF (2006) Correction of global precipitation products for orographic rffects. J Clim 19:15–38. doi:10.1175/JCLI3604.1

    Article  Google Scholar 

  • Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:4257–+. doi:10.1029/2002JD002499

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass–flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886

    Article  Google Scholar 

  • Caldwell P (2010) California wintertime precipitation bias in regional and global climate models. J Appl Meteorol Climatol 49:2147–2158

    Article  Google Scholar 

  • Callies J, Ferrari R, B ohler O (2014) Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum. Proc Natl Acad Sci USA 111:17033–17038. doi:10.1073/pnas.1410772111

    Article  Google Scholar 

  • Cho JY, Zhu Y, Newell RE, Anderson BE, Barrick JD, Gregory GL, Sachse GW, Carroll MA, Albercook GM (1999) Horizontal wavenumber spectra of winds, temperature, and trace gases during the pacific exploratory missions: 1. climatology. J Geophys Res: Atmos (1984–2012) 104:5697–5716

    Article  Google Scholar 

  • Davis A, Marshak A, Wiscombe W, Cahalan R (1996) Multifractal characterizations of intermittency in nonstationary geophysical signals and fields. In: Treviño G, Hardin J, Douglas B, Andreas E, Chires Associates Inc., Houghton MI (eds) Current topics in nonstationary analysis. Proceedings of the second workshop on nonstationary random processes and their applications. San Diego, California 11–12 June 1995

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Giorgi F, Coppola E, Raffaele F, Diro G, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart M, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51. doi:10.1007/s10584-014-1117-0

    Article  Google Scholar 

  • Giorgi F, Marinucci MR (1996) an investigation of the sensitivity of simulated precipitation to the model resolution and its implications for climate studies. Mon Weather Rev 124:148–166

    Article  Google Scholar 

  • Gong X, Barnston AG, Ward MN (2003) The effect of spatial aggregation on the skill of seasonal precipitation forecasts. J Clim 16:3059–3071. doi:10.1175/1520-0442(2003)016

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Gutowski WJ Jr, Decker SG, Donavon RA, Pan Z, Arritt RW, Takle ES (2003) Temporal spatial scales of observed and simulated precipitation in central U.S. climate. J Clim 16:3841–3847

    Article  Google Scholar 

  • Hahn RS, Mass CF (2009) The impact of positive-definite moisture advection and low-level moisture flux bias over orography. Mon Weather Rev 137:3055–3071

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566

    Article  Google Scholar 

  • Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, vol 88. Academic Press, Cambridge

    Google Scholar 

  • Iorio JP, Duffy PB, Govindasamy B, Thompson SL, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258. doi:10.1007/s00382-004-0440-y

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449. doi:10.1256/smsqj.52609

    Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr 10:1–84

    Google Scholar 

  • Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeorol 4:1025. doi:10.1175/1525-7541(2003)004

    Article  Google Scholar 

  • Li F, Collins W, Wehner M, Williamson D, Olson J (2011a) Response of precipitation extremes to idealized global warming in an aqua-planet climate model: towards a robust projection across different horizontal resolutions. Tellus A 63:876–883

    Article  Google Scholar 

  • Li F, Collins WD, Wehner MF, Williamson DL, Olson JG (2011b) Response of precipitation extremes to idealized global warming in an aqua-planet climate model: towards a robust projection across different horizontal resolutions. Tellus A 63:876–883

    Article  Google Scholar 

  • Li F, Rosa D, Collins WD, Wehner MF (2012) Super-parameterization: a better way to simulate regional extreme precipitation? J Adv Model earth Syst. doi:10.1029/2011MS000106

    Google Scholar 

  • Mearns LO, Giorgi F, McDaniel L, Brodeur CS (1995) Analysis of daily variability and diurnal range of temperature in a nested regional climate model: comparison with observations and doubled \(\text{ CO }_2\) results. Clim Dyn 11:193–209

    Article  Google Scholar 

  • Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284

    Article  Google Scholar 

  • O’Brien TA, Li F, Collins WD, Rauscher SA, Ringler TD, Taylor M, Hagos SM, Leung LR (2013) Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J Clim 26:9313–9333. doi:10.1175/JCLI-D-13-00005.1

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EA (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within regcm. J Geophys Res: Atmos (1984–2012) 105:29579–29594

    Article  Google Scholar 

  • Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • Rauscher S, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi:10.1007/s00382-009-0607-7

    Article  Google Scholar 

  • Rauscher SA, Ringler TD, Skamarock WC, Mirin AA (2013) Exploring a global multiresolution modeling approach using aquaplanet simulations. J Clim 26:2432–2452

    Article  Google Scholar 

  • Rauscher SA, Seth A, Liebmann B, Qian JH, Camargo SJ (2007) Regional climate model simulated timing and character of seasonal rains in South America. Mon Weather Rev 135:2642. doi:10.1175/MWR3424.1

    Article  Google Scholar 

  • Rivington M, Miller D, Matthews KB, Russell G, Bellocchi G, Buchan K (2008) Evaluating regional climate model estimates against site-specific observed data in the UK. Clim Change 88:157–185

    Article  Google Scholar 

  • Scinocca JF, McFarlane NA (2004) The variability of modeled tropical precipitation. J Atmos Sci 61:1993–2015

    Article  Google Scholar 

  • Seth A, Rojas M, Liebmann B, Qian JH (2004) Daily rainfall analysis for South America from a regional climate model and station observations. Geophys Res Lett. doi:10.1029/2003GL019220

    Google Scholar 

  • Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690

    Article  Google Scholar 

  • Tian X, Dai A, Yang D, Xie Z (2007) Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J Geophys Res 112:14101. doi:10.1029/2007JD008420

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34:241–247

    Article  Google Scholar 

  • White PW (2003) Physical processes (cy23r4). Technical Report IFS Documentation Cycle CY23r4, ECMWF

  • Williamson D (2008) Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, version 3. Tellus A 60:848–862

    Article  Google Scholar 

  • Williamson DL (2013) The effect of time steps and time-scales on parametrization suites. Q J R Meteorol Soc 139:548–560. doi:10.1002/qj.1992

    Article  Google Scholar 

  • Yang D, Kane D, Zhang Z, Legates D, Goodison B (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32:19501–+. doi:10.1029/2005GL024057

    Google Scholar 

  • Yang Q, Leung LR, Rauscher SA, Ringler TD, Taylor MA (2014) Atmospheric moisture budget and spatial resolution dependence of precipitation extremes in aqua-planet simulations. J Clim 27:3565–3581. doi:10.1175/JCLI-D-13-00468.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their comments which greatly helped to improve the content, quality, and presentation of this manuscript. We acknowledge the ENSEMBLES project, funded by the European Commission’s 6th Framework Programme through Contract GOCE-CT-2003-505539. We acknowledge the climate dataset from the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org) and the data providers in the ECA and D project (http://eca.knmi.nl). This study was partly funded by the European Union FP6 project WATCH (Contract No. 036946). This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy Regional and Global Climate Modeling Program (RGCM) under Contract No. DE-AC02-05CH11231. We thank all of the participating modeling groups for providing the data. We thank Malcolm Haylock and Albert Klein Tank for answering questions about the ENSEMBLES observations, and Ole Bolling Christensen for data processing help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Rauscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauscher, S.A., O’Brien, T.A., Piani, C. et al. A multimodel intercomparison of resolution effects on precipitation: simulations and theory. Clim Dyn 47, 2205–2218 (2016). https://doi.org/10.1007/s00382-015-2959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2959-5

Keywords

Navigation