Skip to main content

Advertisement

Log in

Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

It has been shown that the atmospheric response to the Atlantic Equatorial Mode is non-stationary. After the 1970s, Sea Surface Temperature (SST) anomalies in the tropical Atlantic are able to alter the atmosphere in the tropical Pacific via modifications of the Walker circulation. Such changes could be related to the differences in the background state of the global SSTs before and after the 1970s, but also to changes in the interannual Equatorial Mode itself. In this work we first describe the differences in the interannual Equatorial Mode before and after the 1970s. Then we use two AGCMs to perform different sensitivity experiments changing the spatial structure of the Equatorial Mode, and we explore the differences in the atmospheric response over the tropical Pacific region to each of the SST patterns considered. It is shown that the changes in the Walker Atlantic–Pacific cell produced by the EM are stronger after the 1970s, and are reinforced by the change in the impact of the EM over the Indian Ocean and the Maritime Continent. It is also shown that, although the Atlantic–Pacific connection is established by the aforementioned changes in the Walker circulation between the two basins, the modulation of the Indian sector is crucial for a realistic simulation of such connection by climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bjerknes J (1969) Atmospheric teleconnections from the Equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Cassou C, Desert C, Terray L, Hurrell JW, Drévillon M (2004) Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J Clim 17:3349–3363

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2011) Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn. doi:10.1007/s00382-011-1097-y

    Google Scholar 

  • García-Serrano J, Losada T, Rodríguez-Fonseca B, Polo I (2008) Tropical Atlantic variability modes (1979–2001). Part II: timeevolving atmospheric circulation related to SST-forced. J Clim 21:6476–6497

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chan P (2004) The preconditioning role of Tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Janicot S (1992) Spatiotemporal variability of West African rainfall. Part II: associated surface and airmass characteristics. J Clim 5:499–511

    Article  Google Scholar 

  • Janicot S, Harzallah A, Fontaine B, Moron V (1998) West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J Clim 11:1874–1882

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside NS (2009) Tropical Atmosphere-Ocean interactions in a conceptual framework. J Clim 22:550–567

    Article  Google Scholar 

  • Jin FF (1997) An equatorial recharge paradigm for ENSO I: conceptual Model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40:2278–2283. doi:10.1002/grl.50362

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi:10.1029/2005GL024233

    Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian Monsoon–ENSO relationship and the Tropical Atlantic: the “Weakening” of the 1980s and 1990s. J Clim 20:4255–4266

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi:10.1029/2007GL033037

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2009) A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135:569–579

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. doi:10.1029/2011GL050049

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Janicot S, Gervois S, Chauvin F, Ruti P (2010a) A multi-model approach to the Atlantic Equatorial Mode: impact on the West African monsoon. Clim Dyn 35:29–43

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010b) Tropical response to the Atlantic Equatorial Mode: AGCM multimodel approach. Clim Dyn 35:45–52

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012a) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi:10.1029/2012GL052423

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Kucharski F (2012b) Tropical influence on the summer Mediterranean climate. Atmos Sci Lett 13:36–42

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the Tropical Pacific related to the equatorial Atlantic. Sci Mar 76:105–116. doi:10.3989/scimar.03610.19a

    Article  Google Scholar 

  • Martín-Rey M, Polo I, Rodríguez-Fonseca B, Polo I, Kucharski F (2014) On the Atlantic–Pacific Niños connection: a multidecadal modulated mode. Clim Dyn 43:3163–3178. doi:10.1007/s00382-014-2305-3

    Article  Google Scholar 

  • Mechoso CR, Yu JY, Arakawa A (2000) A coupled GCM pilgrimage: from climate catastrophe to ENSO simulations. In: Randall DA (ed) General circulation model development: past, present and future. Proceedings of a symposium in honor of Professor Akio Arakawa. Academic, New York, pp 539–575

    Chapter  Google Scholar 

  • Mohino E, Rodríguez-Fonseca B, Losada T, Gervois S, Janicot S, Bader J, Ruti P, Chauvin F (2011) Changes in the intereannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim Dyn 37:1707–1725

    Article  Google Scholar 

  • Nnamchi HC, Li J, Anyadike RNC (2011) Does a dipole mode really exist in the South Atlantic Ocean? J Geophys Res 116:D15104. doi:10.1029/2010JD015579

    Article  Google Scholar 

  • Ott I, Romberg K, Jacobeit J (2015) Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble. Clim Dyn 44:3043–3055

    Article  Google Scholar 

  • Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African precipitation. J Clim 21:6457–6475

    Article  Google Scholar 

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2015) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn 44:115–131

    Article  Google Scholar 

  • Richter I, Mechoso CR, Robertson AW (2008) What determines the position and intensity of the south Atlantic anticyclone in Austral Winter? An AGCM study. J Clim 21:214–229

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2012) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47. doi:10.1038/ngeo1660

    Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Rowell DP, Folland CK, Maskel K, Owen JA, Ward MN (1995) Variability of the summer rainfall over tropical North Africa (1906–92): observations and modeling. Q J R Meteorol Soc 121:669–704. doi:10.1002/qj.49712152311

    Google Scholar 

  • Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the Tropical Atlantic sector. J Clim 13:3285–3297

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperatura analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18. doi:10.1002/(SICI)1097-0088(200001)20:1<1:AID-JOC456>3.0.CO;2-P

    Article  Google Scholar 

  • Vizy EK, Cook KH (2002) Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African monsoon. J Geophys Res. doi:10.1029/2001JD000686

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York. ISBN 0521450713

    Book  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324

    Article  Google Scholar 

  • Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a review of recent findings. Spec Issue Meteorol Z. doi:10.1127/0941-2948/2009/0394

    Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C et al (eds) Earth climate: the ocean–atmosphere interaction. Geophys Monogr, vol 147. American Geophysical Union, pp 121–142

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability:1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 603521 (PREFACE Project), and by the Spanish Project CGL2012-38923-C02-01. The authors thank two anonymous reviewers for their constructive suggestions and comments that have improved this work, as well as the editor for his help along the whole process of publication of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Losada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losada, T., Rodríguez-Fonseca, B. Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode. Clim Dyn 47, 1211–1224 (2016). https://doi.org/10.1007/s00382-015-2897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2897-2

Keywords

Navigation