Skip to main content

Advertisement

Log in

Cerebrospinal fluid shunt malfunctions: A reflective review

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Pediatric hydrocephalus is a common and challenging condition. To date, the ventriculoperitoneal shunt (VPS) is still the main lifesaving treatment option. Nonetheless, it remains imperfect and is associated with multiple short- and long-term complications. This paper is a reflective review of the current state of the VPS, our knowledge gaps, and the future state of shunts in neurosurgical practice.

Methods and results

The authors’ reflections are based on a review of shunts and shunt-related literature.

Conclusion

Overall, there is still an urgent need for the neurosurgical community to actively improve current strategies for shunt failures and shunt-related morbidity. The authors emphasize the role of collaborative efforts amongst like-minded clinicians to establish pragmatic approaches to avoid shunt complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and supplementary material.

References

  1. Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC (2016) Hydrocephalus in children. Lancet 387:788–799

    Article  PubMed  Google Scholar 

  2. Pan P (2018) Outcome analysis of ventriculoperitoneal shunt surgery in pediatric hydrocephalus. J Pediatr Neurosci 13:176–181

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drake JM, Kestle JR, Tuli S (2000) CSF shunts 50 years on–past, present and future. Childs Nerv Syst 16:800–804

    Article  CAS  PubMed  Google Scholar 

  4. Kraemer MR, Sandoval-Garcia C, Bragg T, Iskandar BJ (2017) Shunt-dependent hydrocephalus: management style among members of the American Society of Pediatric Neurosurgeons. J Neurosurg Pediatr 20:216–224

    Article  PubMed  Google Scholar 

  5. Stein SC, Guo W (2008) Have we made progress in preventing shunt failure? A critical analysis. J Neurosurg Pediatr 1:40–47

    Article  PubMed  Google Scholar 

  6. Rekate HL, Kranz D (2009) Headaches in patients with shunts. Semin Pediatr Neurol 16:27–30

    Article  PubMed  Google Scholar 

  7. Tomei KL (2017) The evolution of cerebrospinal fluid shunts: advances in technology and technique. Pediatr Neurosurg 52:369–380

    Article  PubMed  Google Scholar 

  8. Vinchon M, Rekate H, Kulkarni AV (2012) Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  9. Flannery AM, Mitchell L (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 1: introduction and methodology. J Neurosurg Pediatr 14 Suppl 1:3–7

  10. Mazzola CA, Choudhri AF, Auguste KI, Limbrick DD, Rogido M, Mitchell L, Flannery AM (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: management of posthemorrhagic hydrocephalus in premature infants. Journal of Neurosurgery: Pediatrics PED 14:8–23

    Google Scholar 

  11. Paff M, Alexandru-Abrams D, Muhonen M, Loudon W (2018) Ventriculoperitoneal shunt complications: a review. Interdisciplinary Neurosurgery 13:66–70

    Article  Google Scholar 

  12. Wu Y, Green NL, Wrensch MR, Zhao S, Gupta N (2007) Ventriculoperitoneal shunt complications in California: 1990 to 2000. Neurosurgery 61:557–562; discussion 562–553

  13. Verhagen JM, Schrander-Stumpel CT, Krapels IP, de Die-Smulders CE, van Lint FH, Willekes C, Weber JW, Gavilanes AW, Macville MV, Stegmann AP, Engelen JJ, Bakker J, Vos YJ, Frints SG (2011) Congenital hydrocephalus in clinical practice: a genetic diagnostic approach. Eur J Med Genet 54:e542–547

    Article  CAS  PubMed  Google Scholar 

  14. Jacquemin V, Versbraegen N, Duerinckx S, Massart A, Soblet J, Perazzolo C, Deconinck N, Brischoux-Boucher E, De Leener A, Revencu N, Janssens S, Moorgat S, Blaumeiser B, Avela K, Touraine R, Abou Jaoude I, Keymolen K, Saugier-Veber P, Lenaerts T, Abramowicz M, Pirson I (2023) Congenital hydrocephalus: new Mendelian mutations and evidence for oligogenic inheritance. Hum Genomics 17:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuccaro G, Ramos JG (2011) Multiloculated hydrocephalus. Childs Nerv Syst 27:1609–1619

    Article  PubMed  Google Scholar 

  16. Park YS (2022) Treatment strategies and challenges to avoid cerebrospinal fluid shunting for pediatric hydrocephalus. Neurol Med Chir (Tokyo) 62:416–430

    Article  PubMed  Google Scholar 

  17. Hanak BW, Bonow RH, Harris CA, Browd SR (2017) Cerebrospinal fluid shunting complications in children. Pediatr Neurosurg 52:381–400

    Article  PubMed  Google Scholar 

  18. Srinivas D, Tyagi G, Singh GJ (2021) Shunt implants - past, present and future. Neurol India 69:S463–S470

    Article  PubMed  Google Scholar 

  19. Beuriat P-A, Puget S, Cinalli G, Blauwblomme T, Beccaria K, Zerah M, Sainte-Rose C (2017) Hydrocephalus treatment in children: long-term outcome in 975 consecutive patients. J Neurosurg Pediatr PED 20:10–18

    Google Scholar 

  20. Chari A, Czosnyka M, Richards HK, Pickard JD, Czosnyka ZH (2014) Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory: Technical note. J Neurosurg JNS 120:697–707

    Article  Google Scholar 

  21. Hanak BW, Ross EF, Harris CA, Browd SR, Shain W (2016) Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr 18:213–223

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Simon TD, Tamber MS, Wellons JC, 3rd, Whitehead WE, Hydrocephalus Clinical Research N (2013) Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr 12:334–338

    Article  Google Scholar 

  23. Holwerda JC, van Lindert EJ, Buis DR, Hoving EW, Dutch Pediatric Neurosurgery Study G (2020) Surgical intervention for hydrocephalus in infancy; etiology, age and treatment data in a Dutch cohort. Childs Nerv Syst 36:577–582

    Article  Google Scholar 

  24. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J, Jr., Haines S, Schiff SJ, Cochrane DD, Steinbok P, MacNeil N (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–303; discussion 303–295

  25. Kestle J, Drake J, Milner R, Sainte-Rose C, Cinalli G, Boop F, Piatt J, Haines S, Schiff S, Cochrane D, Steinbok P, MacNeil N (2000) Long-term follow-up data from the shunt design trial. Pediatr Neurosurg 33:230–236

    Article  CAS  PubMed  Google Scholar 

  26. McClinton D, Carraccio C, Englander R (2001) Predictors of ventriculoperitoneal shunt pathology. Pediatr Infect Dis J 20:593–597

    Article  CAS  PubMed  Google Scholar 

  27. Tuli S, O'Hayon B, Drake J, Clarke M, Kestle J (1999) Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery 45:1329–1333; discussion 1333–1325

  28. Pillai SV (2021) Techniques and nuances in ventriculoperitoneal shunt surgery. Neurol India 69:S471–S475

    Article  PubMed  Google Scholar 

  29. Elkaim LM, Lavergne P, Venne D, Weil AG (2019) Radiological demonstration of choroid plexus causing proximal shunt dysfunction. Can J Neurol Sci 46:346–347

    Article  PubMed  Google Scholar 

  30. Mao G, Agarwal N, Zuccoli G, Tyler-Kabara EC (2017) Intermittent entrapment of choroid plexus in ventricular catheter. Interdisciplinary Neurosurgery 9:17–19

    Article  Google Scholar 

  31. Czernicki Z, Strzałkowski R, Walasek N, Gajkowska B (2010) What can be found inside shunt catheters. Acta Neurochir Suppl 106:81–85

    Article  CAS  PubMed  Google Scholar 

  32. Sekhar LN, Moossy J, Guthkelch AN (1982) Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features J Neurosurg 56:411–416

    CAS  PubMed  Google Scholar 

  33. Lim JX, Han HP, Foo YW, Chan YH, Ng LP, Low DCY, Seow WT, Low SYY (2023) Paediatric ventriculoperitoneal shunt failures: 12-year experience from a Singapore children's hospital. Childs Nerv Syst

  34. Blegvad C, Skjolding AD, Broholm H, Laursen H, Juhler M (2013) Pathophysiology of shunt dysfunction in shunt treated hydrocephalus. Acta Neurochir (Wien) 155:1763–1772

    Article  CAS  PubMed  Google Scholar 

  35. Sarkiss CA, Sarkar R, Yong W, Lazareff JA (2014) Time dependent pattern of cellular characteristics causing ventriculoperitoneal shunt failure in children. Clin Neurol Neurosurg 127:30–32

    Article  PubMed  Google Scholar 

  36. Lee L, Low S, Low D, Ng LP, Nolan C, Seow WT (2016) Late pediatric ventriculoperitoneal shunt failures: a Singapore tertiary institution’s experience. Neurosurg Focus 41:E7

    Article  PubMed  Google Scholar 

  37. Iglesias S, Ros B, Ibanez G, Delgado A, Ros A, Arraez MA (2019) Shunt independence in paediatric hydrocephalus: our 16-year experience and review. Childs Nerv Syst 35:1547–1555

    Article  PubMed  Google Scholar 

  38. Iglesias S, Ros B, Ibáñez G, Delgado A, Ros Á, Arráez M (2019) Shunt independence in paediatric hydrocephalus: our 16-year experience and review. Childs Nerv Syst 35:1547–1555

    Article  PubMed  Google Scholar 

  39. Symss NP, Oi S (2015) Is there an ideal shunt? A panoramic view of 110 years in CSF diversions and shunt systems used for the treatment of hydrocephalus: from historical events to current trends. Childs Nerv Syst 31:191–202

    Article  PubMed  Google Scholar 

  40. Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bogeskov L, Borgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99:52–57

    Article  PubMed  Google Scholar 

  41. Chernov MF, Kamikawa S, Yamane F, Ishihara S, Hori T (2005) Neurofiberscope-guided management of slit-ventricle syndrome due to shunt placement. J Neurosurg 102:260–267

    PubMed  Google Scholar 

  42. Tey ML, Ng LP, Low DCY, Seow WT, Low SYY (2021) Programmable shunt valves for pediatric hydrocephalus: 22-year experience from a Singapore Children’s Hospital. Brain Sci 11

  43. Naderian N, Habibi Z, Nejat F (2019) Shunt independence in pediatric hydrocephalus. Childs Nerv Syst 35:2035–2036

    Article  PubMed  Google Scholar 

  44. Vinchon M, Baroncini M, Delestret I (2012) Adult outcome of pediatric hydrocephalus. Childs Nerv Syst 28:847–854

    Article  PubMed  PubMed Central  Google Scholar 

  45. Riva-Cambrin J, Kulkarni AV, Burr R, Rozzelle CJ, Oakes WJ, Drake JM, Alvey JS, Reeder RW, Holubkov R, Browd SR, Cochrane DD, Limbrick DD, Naftel R, Shannon CN, Simon TD, Tamber MS, McDonald PJ, Wellons JC, Luerssen TG, Whitehead WE, Kestle JRW (2021) Impact of ventricle size on neuropsychological outcomes in treated pediatric hydrocephalus: an HCRN prospective cohort study. J Neurosurg Pediatr 1–12

  46. Limbrick DD Jr, Castaneyra-Ruiz L, Han RH, Berger D, McAllister JP, Morales DM (2017) Cerebrospinal fluid biomarkers of pediatric hydrocephalus. Pediatr Neurosurg 52:426–435

    Article  PubMed  Google Scholar 

  47. Dalen K, Bruaroy S, Wentzel-Larsen T, Laegreid LM (2008) Intelligence in children with hydrocephalus, aged 4–15 years: a population-based, controlled study. Neuropediatrics 39:146–150

    Article  CAS  PubMed  Google Scholar 

  48. Lacy M, Pyykkonen BA, Hunter SJ, Do T, Oliveira M, Austria E, Mottlow D, Larson E, Frim D (2008) Intellectual functioning in children with early shunted posthemorrhagic hydrocephalus. Pediatr Neurosurg 44:376–381

    Article  PubMed  Google Scholar 

  49. Smith AD, Buckley MG (2012) Spatial navigational impairments in hydrocephalus. Cogn Process 13(Suppl 1):S329–332

    Article  PubMed  Google Scholar 

  50. Kulkarni AV (2010) Quality of life in childhood hydrocephalus: a review. Childs Nerv Syst 26:737–743

    Article  PubMed  Google Scholar 

  51. Bouras T, Sgouros S (2011) Complications of endoscopic third ventriculostomy. J Neurosurg Pediatr 7:643–649

    Article  PubMed  Google Scholar 

  52. Cinalli G, Salazar C, Mallucci C, Yada JZ, Zerah M, Sainte-Rose C (1998) The role of endoscopic third ventriculostomy in the management of shunt malfunction. Neurosurgery 43:1323–1327; discussion 1327–1329

  53. Kulkarni AV, Drake JM, Mallucci CL, Sgouros S, Roth J, Constantini S (2009) Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J Pediatr 155:254–259.e251

    Article  PubMed  Google Scholar 

  54. Kadrian D, van Gelder J, Florida D, Jones R, Vonau M, Teo C, Stening W, Kwok B (2005) Long-term reliability of endoscopic third ventriculostomy. Neurosurgery 56:1271–1278; discussion 1278

  55. Drake J, Chumas P, Kestle J, Pierre-Kahn A, Vinchon M, Brown J, Pollack IF, Arai H (2006) Late rapid deterioration after endoscopic third ventriculostomy: additional cases and review of the literature. J Neurosurg 105:118–126

    PubMed  Google Scholar 

  56. Chi JH, Fullerton HJ, Gupta N (2005) Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979 to 1998. J Neurosurg 103:113–118

    PubMed  Google Scholar 

  57. Abebe MS, Seyoum G, Emamu B, Teshome D (2022) Congenital hydrocephalus and associated risk factors: an institution-based case-control study, Dessie Town, North East Ethiopia. Pediatric Health Med Ther 13:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  58. Murshid WR, Jarallah JS, Dad MI (2000) Epidemiology of infantile hydrocephalus in Saudi Arabia: birth prevalence and associated factors. Pediatr Neurosurg 32:119–123

    Article  CAS  PubMed  Google Scholar 

  59. Stagno V, Navarrete EA, Mirone G, Esposito F (2013) Management of hydrocephalus around the world. World Neurosurg 79:S23.e17–20

  60. McAllister JP 2nd (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 17:285–294

    Article  PubMed  Google Scholar 

  61. Muir RT, Wang S, Warf BC (2016) Global surgery for pediatric hydrocephalus in the developing world: a review of the history, challenges, and future directions. Neurosurg Focus 41:E11

    Article  PubMed  Google Scholar 

  62. Villani R, Tomei G, Gaini SM, Grimoldi N, Spagnoli D, Bello L (1995) Long-term outcome in aqueductal stenosis. Childs Nerv Syst 11:180–185

    Article  CAS  PubMed  Google Scholar 

  63. Sgouros S, Malluci C, Walsh AR, Hockley AD (1995) Long-term complications of hydrocephalus. Pediatr Neurosurg 23:127–132

    Article  CAS  PubMed  Google Scholar 

  64. Rato MJCN, Maliawan S, Niryana IW, Mahadewa TGB (2023) Characteristics of congenital hydrocephalus patients at Prof. Dr. I.G.N.G. Ngoerah General Hospital Denpasar. Neurologico Spinale Medico Chirurgico 6:6–10

    Google Scholar 

  65. Garcia-Bonilla M, McAllister JP, Limbrick DD (2021) Genetics and molecular pathogenesis of human hydrocephalus. Neurol India 69:S268–s274

    Article  PubMed  Google Scholar 

  66. Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT (2016) Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 41:E10

    Article  PubMed  Google Scholar 

  67. Kazan S, Güra A, Uçar T, Korkmaz E, Ongun H, Akyuz M (2005) Hydrocephalus after intraventricular hemorrhage in preterm and low–birth weight infants: analysis of associated risk factors for ventriculoperitoneal shunting. Surg Neurol 64:S77–S81

    Article  PubMed  Google Scholar 

  68. Lee IC, Lee HS, Su PH, Liao WJ, Hu JM, Chen JY (2009) Posthemorrhagic hydrocephalus in newborns: clinical characteristics and role of ventriculoperitoneal shunts. Pediatr Neonatol 50:26–32

    Article  PubMed  Google Scholar 

  69. Pinto C, Malik P, Desai R, Shelar V, Bekina-Sreenivasan D, Satnarine TA, Lavado LK, Singla R, Chavda D, Kaul S, Datta S, Shah S, Patel UK (2021) Post-hemorrhagic hydrocephalus and outcomes amongst neonates with intraventricular hemorrhage: a systematic review and pooled analysis. Cureus 13:e18877

    PubMed  PubMed Central  Google Scholar 

  70. Ballabh P (2014) Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 41:47–67

    Article  PubMed  Google Scholar 

  71. Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luyt K, Jary S, Lea C, Young GJ, Odd D, Miller H, Kmita G, Williams C, Blair PS, Fernández AM, Hollingworth W, Morgan M, Smith-Collins A, Thai NJ, Walker-Cox S, Aquilina K, Pople I, Whitelaw A (2019) Ten-year follow-up of a randomised trial of drainage, irrigation and fibrinolytic therapy (DRIFT) in infants with post-haemorrhagic ventricular dilatation. Health Technol Assess 23:1–116

    Article  PubMed  PubMed Central  Google Scholar 

  73. Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103:475–481

    PubMed  Google Scholar 

  74. Shlobin NA, Ghotme K, Caceres A, Ocal E, Pattisapu JV, Rosseau G, Blount JP, Boop FA (2023) Neurosurgeon-led advocacy for folic acid fortification to prevent spina bifida. World Neurosurgery 172:96–97

    Article  PubMed  Google Scholar 

  75. Kim SH, Chae SA (2022) Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients. Clin Exp Pediatr 65:56–64

    Article  CAS  PubMed  Google Scholar 

  76. Bonadio WA (1992) The cerebrospinal fluid: physiologic aspects and alterations associated with bacterial meningitis. Pediatr Infect Dis J 11:423–431

    Article  CAS  PubMed  Google Scholar 

  77. Snowden JN, Beaver M, Smeltzer MS, Kielian T (2012) Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system. Infect Immun 80:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hanke ML, Kielian T (2012) Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front Cell Infect Microbiol 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stoodley P, Braxton EE Jr, Nistico L, Hall-Stoodley L, Johnson S, Quigley M, Post JC, Ehrlich GD, Kathju S (2010) Direct demonstration of Staphylococcus biofilm in an external ventricular drain in a patient with a history of recurrent ventriculoperitoneal shunt failure. Pediatr Neurosurg 46:127–132

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hunt RW, Warfield SK, Wang H, Kean M, Volpe JJ, Inder TE (2003) Assessment of the impact of the removal of cerebrospinal fluid on cerebral tissue volumes by advanced volumetric 3D-MRI in posthaemorrhagic hydrocephalus in a premature infant. J Neurol Neurosurg Psychiatry 74:658–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yao Z, Wang Y, Zee C, Feng X, Sun H (2009) Computed tomography and magnetic resonance appearance of sporadic meningioangiomatosis correlated with pathological findings. J Comput Assist Tomogr 33:799–804

    Article  PubMed  Google Scholar 

  82. Yuan W, Mangano FT, Air EL, Holland SK, Jones BV, Altaye M, Bierbrauer K (2009) Anisotropic diffusion properties in infants with hydrocephalus: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30:1792–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fletcher JM, McCauley SR, Brandt ME, Bohan TP, Kramer LA, Francis DJ, Thorstad K, Brookshire BL (1996) Regional brain tissue composition in children with hydrocephalus: relationships with cognitive development. Arch Neurol 53:549–557

    Article  CAS  PubMed  Google Scholar 

  84. Fletcher JM, Bohan TP, Brandt ME, Brookshire BL, Beaver SR, Francis DJ, Davidson KC, Thompson NM, Miner ME (1992) Cerebral white matter and cognition in hydrocephalic children. Arch Neurol 49:818–824

    Article  CAS  PubMed  Google Scholar 

  85. Yuan W, McKinstry RC, Shimony JS, Altaye M, Powell SK, Phillips JM, Limbrick DD Jr, Holland SK, Jones BV, Rajagopal A, Simpson S, Mercer D, Mangano FT (2013) Diffusion tensor imaging properties and neurobehavioral outcomes in children with hydrocephalus. AJNR Am J Neuroradiol 34:439–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dewan MC, Rattani A, Fieggen G, Arraez MA, Servadei F, Boop FA, Johnson WD, Warf BC, Park KB (2018) Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive Summary of the Global Neurosurgery Initiative at the Program in Global Surgery and Social Change. J Neurosurg:1–10

  87. Ferraris KP, Palabyab EPM, Kim S, Matsumura H, Yap MEC, Cloma-Rosales VO, Letyagin G, Muroi A, Baticulon RE, Alcazaren JC, Seng K, Navarro JE (2021) Global surgery indicators and pediatric hydrocephalus: a multicenter cross-country comparative study building the case for health system strengthening. Front Surg 8

  88. Aukrust CG, Paulsen AH, Uche EO, Kamalo PD, Sandven I, Fjeld HE, Stromme H, Eide PK (2022) Aetiology and diagnostics of paediatric hydrocephalus across Africa: a systematic review and meta-analysis. Lancet Glob Health 10:e1793–e1806

    Article  CAS  PubMed  Google Scholar 

  89. Lartigue JW, Dada OE, Haq M, Rapaport S, Sebopelo LA, Ooi SZY, Senyuy WP, Sarpong K, Vital A, Khan T, Karekezi C, Park KB (2021) Emphasizing the role of neurosurgery within global health and national health systems: a call to action. Front Surg 8:690735

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kalyvas AV, Kalamatianos T, Pantazi M, Lianos GD, Stranjalis G, Alexiou GA (2016) Maternal environmental risk factors for congenital hydrocephalus: a systematic review. Neurosurg Focus 41:E3

    Article  PubMed  Google Scholar 

  91. Sun G, Xu ZM, Liang JF, Li L, Tang DX (2011) Twelve-year prevalence of common neonatal congenital malformations in Zhejiang Province, China. World J Pediatr 7:331–336

    Article  PubMed  Google Scholar 

  92. Navarro R, Gil-Parra R, Reitman AJ, Olavarria G, Grant JA, Tomita T (2006) Endoscopic third ventriculostomy in children: early and late complications and their avoidance. Childs Nerv Syst 22:506–513

    Article  PubMed  Google Scholar 

  93. Dusick JR, McArthur DL, Bergsneider M (2008) Success and complication rates of endoscopic third ventriculostomy for adult hydrocephalus: a series of 108 patients. Surg Neurol 69:5–15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript. Conceptualization: Wan Tew Seow, John RW Kestle, and Marion L Walker. Data curation: Wan Tew Seow, Sharon YY Low, and John RW Kestle. Formal analysis: Wan Tew Seow and Sharon YY Low. Investigation: Wan Tew Seow and Sharon YY Low. Methodology: Sharon YY Low. Project administration: Wan Tew Seow, John RW Kestle, and Marion L Walker. Resources: Wan Tew Seow and Sharon YY Low. Validation: Wan Tew Seow, John RW Kestle, and Marion L Walker. Writing—original draft: Sharon YY Low. Writing—review and editing: Wan Tew Seow, John RW Kestle, Marion L Walker, and Sharon YY Low.

Corresponding author

Correspondence to Sharon Y. Y. Low.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethics wavier is provided as this study is a review paper based on literature searches conducted on online public databases. For the 2 case examples described in the manuscript, ethics approval is provided by the hospital ethics review board (Reference: SingHealth CIRB 2020/2416). The consent to publish is included as part of the written, informed consent form in this study.

Consent for publication

For the 2 case examples described in the manuscript, ethics approval is provided by the hospital ethics review board (Reference: SingHealth CIRB 2020/2416). Participants and, or their legal guardians signed a written consent for this study. The consent to publish has been included as part of the study.

Conflict of interest

We, the authors of this manuscript, report no funding, financial support, or industrial affiliations received for the writing of this article. In addition, we report no conflict of interest concerning the material or method used in this paper. This manuscript has not been published and is not being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, S.Y.Y., Kestle, J.R.W., Walker, M.L. et al. Cerebrospinal fluid shunt malfunctions: A reflective review. Childs Nerv Syst 39, 2719–2728 (2023). https://doi.org/10.1007/s00381-023-06070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06070-4

Keywords

Navigation