Skip to main content

Advertisement

Log in

Risk factors for postresection shunting in children with suprasellar tumor: a retrospective analysis of 124 patients

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

Hydrocephalus is one of the most significant comorbidities of pediatric suprasellar tumors. Up to 37.5–68.0% of patients were diagnosed with hydrocephalus at admission. However, after surgical resection of the tumor, 9.3–51.4% of the hydrocephalus will persist and require a ventriculoperitoneal shunt (VPS) surgery. The purpose of this study was to identify the risk factors associated with postresection shunting in children with suprasellar tumors.

Methods

We conducted a retrospective analysis of children who underwent surgery for suprasellar tumors at our department from February 2011 to December 2020. We used univariate and multivariate analysis to screen the factors that might be correlated with postoperative shunt placement, taking into account patients’ characteristics, tumor histology/size/calcification, the severity of preoperative hydrocephalus, the involvement of ventricles, external ventricular drainage (EVD) placement, postoperative intraventricular hematoma, the extent of resection, and other surgical details.

Results

A total of 124 children who underwent surgery for suprasellar tumors were included in our study. Hydrocephalus was present in 55 patients (44.3%) at admission; 23 patients (18.5%) received VPS implantation after tumor removal. Univariate analysis showed that the involvement of ventricles (p = 0.002), moderate/severe preoperative hydrocephalus (p = 0.001), postoperative intraventricular hematoma (p = 0.005), and EVD implantation (p = 0.001) were significantly associated with postoperative VPS. Multivariate analysis confirmed that only ventricle involvement (p = 0.002; OR = 5.6; 95%CI 1.8–17.2) and intraventricular hematoma (p = 0.01; OR = 10.7; 95%CI 1.8–64.2) were independent risk factors for postresection shunting.

Conclusion

Ventricle involvement and intraventricular hematoma can be identified as independent predictors for postoperative shunting in pediatric suprasellar tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64:83–103. https://doi.org/10.3322/caac.21219

    Article  PubMed  Google Scholar 

  2. Bennett CD, Kohe SE, Gill SK, Davies NP, Wilson M, Storer LCD, Ritzmann T, Paine SML, Scott IS, Nicklaus-Wollenteit I, Tennant DA, Grundy RG, Peet AC (2018) Tissue metabolite profiles for the characterisation of paediatric cerebellar tumours. Sci Rep 8:11992. https://doi.org/10.1038/s41598-018-30342-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hossain MJ, Xiao W, Tayeb M, Khan S (2021) Epidemiology and prognostic factors of pediatric brain tumor survival in the US: Evidence from four decades of population data. Cancer Epidemiol 72:101942. https://doi.org/10.1016/j.canep.2021.101942

    Article  PubMed  Google Scholar 

  4. Malbari F (2021) Pediatric neuro-oncology. Neurol Clin 39:829–845. https://doi.org/10.1016/j.ncl.2021.04.005

    Article  PubMed  Google Scholar 

  5. Rosemberg S, Fujiwara D (2005) Epidemiology of pediatric tumors of the nervous system according to the WHO 2000 classification: a report of 1,195 cases from a single institution. Childs Nerv Syst 21:940–944. https://doi.org/10.1007/s00381-005-1181-x

    Article  PubMed  Google Scholar 

  6. Harmouch A, Taleb M, Lasseini A, Maher M, Sefiani S (2012) Epidemiology of pediatric primary tumors of the nervous system: a retrospective study of 633 cases from a single Moroccan institution. Neurochirurgie 58:14–18. https://doi.org/10.1016/j.neuchi.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen EH, Jørgensen JO, Bjerre P, Andersen M, Andersen C, Feldt-Rasmussen U, Poulsgaard L, Kristensen L, Astrup J, Jørgensen J, Laurberg P (2013) Acute presentation of craniopharyngioma in children and adults in a Danish national cohort. Pituitary 16:528–535. https://doi.org/10.1007/s11102-012-0451-3

    Article  CAS  PubMed  Google Scholar 

  8. Elliott RE, Jane JA Jr, Wisoff JH (2011) Surgical management of craniopharyngiomas in children: meta-analysis and comparison of transcranial and transsphenoidal approaches. Neurosurgery 69:630–643. https://doi.org/10.1227/NEU.0b013e31821a872d

    Article  PubMed  Google Scholar 

  9. Elliott RE, Sands SA, Strom RG, Wisoff JH (2010) Craniopharyngioma Clinical Status Scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg Focus 28:E2. https://doi.org/10.3171/2010.2.Focus09304

    Article  PubMed  Google Scholar 

  10. Bao Y, Pan J, Qi ST, Lu YT, Peng JX (2016) Origin of craniopharyngiomas: implications for growth pattern, clinical characteristics, and outcomes of tumor recurrence. J Neurosurg 125:24–32. https://doi.org/10.3171/2015.6.Jns141883

    Article  CAS  PubMed  Google Scholar 

  11. Shoji T, Kawaguchi T, Ogawa Y, Watanabe M, Fujimura M, Tominaga T (2018) Continuous Minor Bleeding from Tumor Surface in Patients with Craniopharyngiomas: Case Series of Nonobstructive Hydrocephalus. J Neurol Surg A Cent Eur Neurosurg 79:436–441. https://doi.org/10.1055/s-0038-1646957

    Article  PubMed  Google Scholar 

  12. Kawaguchi T, Ogawa Y, Watanabe M, Tominaga T (2015) Craniopharyngiomas presenting with nonobstructive hydrocephalus: underlying influence of subarachnoidal hemorrhage. Two case reports. J Neurol Surg A Cent Eur Neurosurg 76:418–423. https://doi.org/10.1055/s-0034-1382784

    Article  PubMed  Google Scholar 

  13. Wong TT, Liang ML, Chen HH, Chang FC (2011) Hydrocephalus with brain tumors in children. Childs Nerv Syst 27:1723–1734. https://doi.org/10.1007/s00381-011-1523-9

    Article  PubMed  Google Scholar 

  14. Fouda MA, Riordan CP, Zurakowski D, Goumnerova LC (2020) Analysis of 2141 pediatric craniopharyngioma admissions in the USA utilizing the Kids’ Inpatient Database (KID): predictors of discharge disposition. Childs Nerv Syst 36:3007–3012. https://doi.org/10.1007/s00381-020-04640-4

    Article  PubMed  Google Scholar 

  15. Bao Y, Qiu B, Qi S, Pan J, Lu Y, Peng J (2016) Influence of previous treatments on repeat surgery for recurrent craniopharyngiomas in children. Childs Nerv Syst 32:485–491. https://doi.org/10.1007/s00381-015-3003-0

    Article  PubMed  Google Scholar 

  16. Sarkar S, Chacko SR, Korula S, Simon A, Mathai S, Chacko G, Chacko AG (2021) Long-term outcomes following maximal safe resection in a contemporary series of childhood craniopharyngiomas. Acta Neurochir (Wien) 163:499–509. https://doi.org/10.1007/s00701-020-04591-4

    Article  Google Scholar 

  17. Apra C, Enachescu C, Lapras V, Raverot G, Jouanneau E (2019) Is gross total resection reasonable in adults with craniopharyngiomas with hypothalamic involvement?. World Neurosur 129:e803–e811. https://doi.org/10.1016/j.wneu.2019.06.037

    Article  Google Scholar 

  18. Steinbok P (2015) Craniopharyngioma in children: long-term outcomes. Neurol Med Chir (Tokyo) 55:722–726. https://doi.org/10.2176/nmc.ra.2015-0099

    Article  Google Scholar 

  19. Tomita T, Bowman RM (2005) Craniopharyngiomas in children: surgical experience at Children’s Memorial Hospital. Childs Nerv Syst 21:729–746. https://doi.org/10.1007/s00381-005-1202-9

    Article  PubMed  Google Scholar 

  20. Zuccaro G (2005) Radical resection of craniopharyngioma. Childs Nerv Syst 21:679–690. https://doi.org/10.1007/s00381-005-1201-x

    Article  PubMed  Google Scholar 

  21. Sreenivasan SA, Madhugiri VS, Sasidharan GM, Kumar RV (2016) Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique. J Cancer Res Ther 12:161–168. https://doi.org/10.4103/0973-1482.153999

    Article  CAS  PubMed  Google Scholar 

  22. Santos de Oliveira R, Barros Juca CE, Valera ET, Machado HR (2008) Hydrocephalus in posterior fossa tumors in children. Are there factors that determine a need for permanent cerebrospinal fluid diversion?. Childs Nerv Syst 24:1397–1403. https://doi.org/10.1007/s00381-008-0649-x

    Article  PubMed  Google Scholar 

  23. Riva-Cambrin J, Detsky AS, Lamberti-Pasculli M, Sargent MA, Armstrong D, Moineddin R, Cochrane DD, Drake JM (2009) Predicting postresection hydrocephalus in pediatric patients with posterior fossa tumors. J Neurosurg Pediatr 3:378–385. https://doi.org/10.3171/2009.1.PEDS08298

    Article  PubMed  Google Scholar 

  24. Abraham AP, Moorthy RK, Jeyaseelan L, Rajshekhar V (2019) Postoperative intraventricular blood: a new modifiable risk factor for early postoperative symptomatic hydrocephalus in children with posterior fossa tumors. Childs Nerv Syst 35:1137–1146. https://doi.org/10.1007/s00381-019-04195-z

    Article  PubMed  Google Scholar 

  25. Chen T, Ren Y, Wang C, Huang B, Lan Z, Liu W, Ju Y, Hui X, Zhang Y (2020) Risk factors for hydrocephalus following fourth ventricle tumor surgery: A retrospective analysis of 121 patients. PLoS One 15:e0241853. https://doi.org/10.1371/journal.pone.0241853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bateman GA, Fiorentino M (2016) Childhood hydrocephalus secondary to posterior fossa tumor is both an intra- and extraaxial process. J Neurosurg Pediatr 18:21–28. https://doi.org/10.3171/2016.1.peds15676

    Article  PubMed  Google Scholar 

  27. McCrea HJ, George E, Settler A, Schwartz TH, Greenfield JP (2016) Pediatric Suprasellar Tumors. J Child Neurol 31:1367–1376. https://doi.org/10.1177/0883073815620671

    Article  PubMed  Google Scholar 

  28. Sainte-Rose C, Cinalli G, Roux FE, Maixner R, Chumas PD, Mansour M, Carpentier A, Bourgeois M, Zerah M, Pierre-Kahn A, Renier D (2001) Management of hydrocephalus in pediatric patients with posterior fossa tumors: the role of endoscopic third ventriculostomy. J Neurosurg 95:791–797. https://doi.org/10.3171/jns.2001.95.5.0791

    Article  CAS  PubMed  Google Scholar 

  29. Frisoli F, Kakareka M, Cole KA, Waanders AJ, Storm PB, Lang SS (2019) Endoscopic third ventriculostomy prior to resection of posterior fossa tumors in children. Childs Nerv Syst 35:789–794. https://doi.org/10.1007/s00381-019-04125-z

    Article  PubMed  Google Scholar 

  30. Srinivasan HL, Foster MT, van Baarsen K, Hennigan D, Pettorini B, Mallucci C (2020) Does pre-resection endoscopic third ventriculostomy prevent the need for post-resection CSF diversion after pediatric posterior fossa tumor excision? A historical cohort study and review of the literature. J Neurosurg Pediatr 25:615–624. https://doi.org/10.3171/2019.12.peds19539

    Article  Google Scholar 

  31. Müller HL (2020) The diagnosis and treatment of craniopharyngioma. Neuroendocrinology 110:753–766. https://doi.org/10.1159/000504512

    Article  CAS  PubMed  Google Scholar 

  32. Steno J, Malácek M, Bízik I (2004) Tumor-third ventricular relationships in supradiaphragmatic craniopharyngiomas: correlation of morphological, magnetic resonance imaging, and operative findings. Neurosurgery 54:1051–1060. https://doi.org/10.1227/01.neu.0000120421.11171.61

    Article  PubMed  Google Scholar 

  33. Deling L, Nan J, Yongji T, Shuqing Y, Zhixian G, Jisheng W, Liwei Z (2013) Intraventricular ganglioglioma prognosis and hydrocephalus: The largest case series and systematic literature review. Acta Neurochir (Wien) 155:1253–1260. https://doi.org/10.1007/s00701-013-1728-7

    Article  Google Scholar 

  34. Pilotto C, Liguoro I, Scaravetti S, Passone E, D’Agostini S, Tuniz F, Skrap M, Cogo P (2021) Risk Factors of Persistent Hydrocephalus in Children with Brain Tumor: A Retrospective Analysis. Pediatr Neurosurg. https://doi.org/10.1159/000513732

    Article  PubMed  Google Scholar 

  35. Kombogiorgas D, Natarajan K, Sgouros S (2008) Predictive value of preoperative ventricular volume on the need for permanent hydrocephalus treatment immediately after resection of posterior fossa medulloblastomas in children. J Neurosurg Pediatr 1:451–455. https://doi.org/10.3171/PED/2008/1/6/451

    Article  PubMed  Google Scholar 

  36. Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23:997–1003. https://doi.org/10.1038/nm.4361

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant nos. 81702478 and 81602204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Shu.

Ethics declarations

Conflict of interest

The authors state that this study was conducted without any business or financial relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, J., Zhao, K. et al. Risk factors for postresection shunting in children with suprasellar tumor: a retrospective analysis of 124 patients. Childs Nerv Syst 38, 939–945 (2022). https://doi.org/10.1007/s00381-022-05498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05498-4

Keywords

Navigation