Skip to main content

Advertisement

Log in

Increased mortality and aggravation of heart failure in liver X receptor-α knockout mice after myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Liver X receptors, LXRα (NR1H3) and LXRβ (NR1H2), are best known as nuclear oxysterol receptors and physiological master regulators of lipid and cholesterol metabolism. LXRα play a protective role in acute myocardial ischemia/reperfusion (MI/R) injury, but its role in myocardial infarction (MI) is unknown. The present study was undertaken to determine the effect of LXRα knockout on survival and development of chronic heart failure after MI. Wild-type (WT) and LXRα−/− mice were subjected to MI followed by serial echocardiographic and histological assessments. Greater myocyte apoptosis and inflammation within the infarcted zones were found in LXRα−/− group at 3 days after MI. At 4 weeks post-MI, LXRα−/− MI murine hearts demonstrated significantly increased infarct size, reduced ejection fraction (LXRα−/− 29.4 % versus WT 34.4 %), aggravated left ventricular (LV) chamber dilation, enhanced fibrosis and reduced angiogenesis. In addition, LXRα−/− mice had increased mortality compared with WT mice. LXRα deficiency increases mortality, aggravates pathological injury and LV remodeling induced by MI. Drugs specifically targeting LXRα may be promising in the treatment of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel-Karim AR, Maini B, Biro S, Lee JB, Stone GW, Weisz G, Maehara A (2012) In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J 33:372–383

    Article  PubMed  Google Scholar 

  2. Zhang BH, Guo CX, Wang HX, Lu LQ, Wang YJ, Zhang LK, Du FH, Zeng XJ (2014) Cardioprotective effects of adipokine apelin on myocardial infarction. Heart Vessels 29:679–689

    Article  CAS  PubMed  Google Scholar 

  3. Cabiati M, Martino A, Mattii L, Caselli C, Prescimone T, Lionetti V, Morales MA, Del Ry S (2014) Adenosine receptor expression in an experimental animal model of myocardial infarction with preserved left ventricular ejection fraction. Heart Vessels 29:513–519

    Article  PubMed  Google Scholar 

  4. Gheorghiade M, Bonow RO (1998) Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97:282–289

    Article  CAS  PubMed  Google Scholar 

  5. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    Article  PubMed  Google Scholar 

  6. Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR (2012) Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 33:394–404

    Article  CAS  PubMed  Google Scholar 

  7. Kuipers I, Li J, Vreeswijk-Baudoin I, Koster J, van der Harst P, Sillje HH, Kuipers F, van Veldhuisen DJ, van Gilst WH, de Boer RA (2010) Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo. Eur J Heart Fail 12:1042–1050

    Article  CAS  PubMed  Google Scholar 

  8. Wu S, Yin R, Ernest R, Li Y, Zhelyabovska O, Luo J, Yang Y, Yang Q (2009) Liver X receptors are negative regulators of cardiac hypertrophy via suppressing NF-κB signalling. Cardiovasc Res 84:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei P, Baysa A, Nebb HI, Valen G, Skomedal T, Osnes JB, Yang Z, Haugen F (2013) Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia-reperfusion injury. Basic Res Cardiol 108:323

    Article  PubMed  Google Scholar 

  10. He Q, Pu J, Yuan A, Lau WB, Gao E, Koch WJ, Ma XL, He B (2014) Activation of liver-X-receptor alpha but not liver-X-receptor beta protects against myocardial ischemia/reperfusion injury. Circ Heart Fail 7:1032–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ (2010) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 107:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsuda T, Gao E, Evangelisti L, Markova D, Ma X, Chu ML (2003) Post-ischemic myocardial fibrosis occurs independent of hemodynamic changes. Cardiovasc Res 59:926–933

    Article  CAS  PubMed  Google Scholar 

  13. He K, Chen X, Han C, Xu L, Zhang J, Zhang M, Xia Q (2014) Lipopolysaccharide-induced cross-tolerance against renal ischemia-reperfusion injury is mediated by hypoxia-inducible factor-2alpha-regulated nitric oxide production. Kidney Int 85:276–288

    Article  CAS  PubMed  Google Scholar 

  14. Matsui Y, Nakano N, Shao D, Gao S, Luo W, Hong C, Zhai P, Holle E, Yu X, Yabuta N, Tao W, Wagner T, Nojima H, Sadoshima J (2008) Lats2 is a negative regulator of myocyte size in the heart. Circ Res 103:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abbate A, Biondi-Zoccai GG, Baldi A (2002) Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol 193:145–153

    Article  CAS  PubMed  Google Scholar 

  16. Nishida K, Kaziro Y, Satoh T (1999) Anti-apoptotic function of Rac in hematopoietic cells. Oncogene 18:407–415

    Article  CAS  PubMed  Google Scholar 

  17. Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907–1939

    Article  CAS  PubMed  Google Scholar 

  18. Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta 1833:945–953

    Article  CAS  PubMed  Google Scholar 

  19. Ahn A, Frishman WH, Gutwein A, Passeri J, Nelson M (2008) Therapeutic angiogenesis: a new treatment approach for ischemic heart disease–part I. Cardiol Rev 16:163–171

    Article  PubMed  Google Scholar 

  20. Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, He Y, Zheng X (2015) Intramyocardial delivery of VEGF via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessels. doi:10.1007/s00380-015-0710-0

    Google Scholar 

  21. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  22. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045

    Article  CAS  PubMed  Google Scholar 

  23. Zelcer N, Tontonoz P (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 116:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Li C, Cheng K, Zhang R, Narsinh K, Li S, Li X, Qin X, Zhang R, Li C, Su T, Chen J, Cao F (2014) Activation of liver X receptor improves viability of adipose-derived mesenchymal stem cells to attenuate myocardial ischemia injury through TLR4/NF-κB and Keap-1/Nrf-2 signaling pathways. Antioxid Redox Signal 21:2543–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pelzer T, Loza PA, Hu K, Bayer B, Dienesch C, Calvillo L, Couse JF, Korach KS, Neyses L, Ertl G (2005) Increased mortality and aggravation of heart failure in estrogen receptor-beta knockout mice after myocardial infarction. Circulation 111:1492–1498

    Article  CAS  PubMed  Google Scholar 

  26. Tomaselli GF, Marban E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270–283

    Article  CAS  PubMed  Google Scholar 

  27. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51

    Article  CAS  PubMed  Google Scholar 

  28. Gao F, Tao L, Yan W, Gao E, Liu HR, Lopez BL, Christopher TA, Ma XL (2004) Early anti-apoptosis treatment reduces myocardial infarct size after a prolonged reperfusion. Apoptosis 9:553–559

    Article  CAS  PubMed  Google Scholar 

  29. Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, Amin J, Apstein CS, Colucci WS (2000) Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol 279:H422–H428

    CAS  PubMed  Google Scholar 

  30. Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, Yang Q, Huang Y, Wei YS, Liu PP, Liu DP, Liang CC (2007) Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115:1885–1894

    Article  CAS  PubMed  Google Scholar 

  31. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    Article  CAS  PubMed  Google Scholar 

  32. Martos R, Baugh J, Ledwidge M, O’Loughlin C, Conlon C, Patle A, Donnelly SC, McDonald K (2007) Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115:888–895

    Article  PubMed  Google Scholar 

  33. Boyle AJ, Kelly DJ, Zhang Y, Cox AJ, Gow RM, Way K, Itescu S, Krum H, Gilbert RE (2005) Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction. J Mol Cell Cardiol 39:213–221

    Article  CAS  PubMed  Google Scholar 

  34. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  CAS  PubMed  Google Scholar 

  35. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633

    Article  CAS  PubMed  Google Scholar 

  36. Spyridon M, Moraes LA, Jones CI, Sage T, Sasikumar P, Bucci G, Gibbins JM (2011) LXR as a novel antithrombotic target. Blood 117:5751–5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Laboratory of Transplantation and Hepatic Surgery, Ren Ji Hospital. Furthermore, we are grateful for Jiang Zhang and Dawei Li for providing excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This investigation conforms to the National Institutes of Health Guidelines on the Use of Laboratory Animals, and was approved by the Institute’s Animal Ethics Committee.

Additional information

X. Liu and J. Gao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, J., Xia, Q. et al. Increased mortality and aggravation of heart failure in liver X receptor-α knockout mice after myocardial infarction. Heart Vessels 31, 1370–1379 (2016). https://doi.org/10.1007/s00380-015-0781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0781-y

Keywords

Navigation