Skip to main content

Advertisement

Log in

Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia–reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Liver X receptor (LXR)-α and -β play a major role in lipid and glucose homeostasis. Their expression and function in the heart is not well characterized. Our aim was to describe the expression of LXRs in the murine heart, and to determine effects of cardiac LXR activation on target gene expression, lipid homeostasis and ischemia. Both LXRα and -β were expressed in heart tissues, HL-1 cells and isolated cardiomyocytes as determined by qRT-PCR. Elevated cardiac expression of LXR target genes and LXRβ was observed 24 h after in vivo permanent coronary artery ligation. The synthetic LXR agonist GW3965 induced mRNA expression of the LXR target genes in HL-1 cells and isolated cardiomyocytes. This was associated with a buildup of intracellular triglycerides and expanding lipid droplets as quantified by confocal microscopy. Mice injected with GW3965 had cardiac LXR activation as judged by increased target gene expression and lipid droplet accumulation. GW3965 in vivo and in vitro increased expression of genes inducing triglyceride synthesis, and altered expression of lipid droplet-binding protein genes. GW3965 protected HL-1 cells against hypoxia-reoxygenation induced apoptosis. LXR activation by GW3965 in vivo prior to heart isolation and perfusion with induced global ischemia and reperfusion improved left ventricular contractile function and decreased infarct size. In conclusion, LXRs are expressed in the murine heart in the basal state, and are activated by myocardial infarction. Activation of LXR by the synthetic agonist GW3965 is associated with intracardiac accumulation of lipid droplets and protection against myocardial ischemia–reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barba I, Chavarria L, Ruiz-Meana M, Mirabet M, Agullo E, Garcia-Dorado D (2009) Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia–reperfusion injury in cardiomyocytes. J Physiol 587:1331–1341. doi:10.1113/jphysiol.2008.163311

    Article  PubMed  CAS  Google Scholar 

  2. Bilet L, van de Weijer T, Hesselink MK, Glatz JF, Lamb HJ, Wildberger J, Kooi ME, Schrauwen P, Schrauwen-Hinderling VB (2011) Exercise-induced modulation of cardiac lipid content in healthy lean young men. Basic Res Cardiol 106:307–315. doi:10.1007/s00395-010-0144-x

    Article  PubMed  CAS  Google Scholar 

  3. Boergesen M, Pedersen TA, Gross B, van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI, Gustafsson JA, Stunnenberg HG, Staels B, Mandrup S (2012) Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32:852–867. doi:10.1128/MCB.06175-11

    Article  PubMed  CAS  Google Scholar 

  4. Borradaile NM, Schaffer JE (2005) Lipotoxicity in the heart. Curr Hypertens Rep 7:412–417

    Article  PubMed  CAS  Google Scholar 

  5. Brindley DN, Kok BP, Kienesberger PC, Lehner R, Dyck JR (2010) Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am J Physiol Endocrinol Metab 298:E897–E908. doi:10.1152/ajpendo.00509.2009

    Article  PubMed  CAS  Google Scholar 

  6. Broderick TL, Currie RW, Paulson DJ (1997) Heat stress induces rapid recovery of mechanical function of ischemic fatty acid perfused hearts by stimulating glucose oxidation during reperfusion. Can J Physiol Pharmacol 75:1273–1279

    Article  PubMed  CAS  Google Scholar 

  7. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224. doi:10.1038/nrm3312

    PubMed  CAS  Google Scholar 

  8. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171. doi:10.1016/S1097-2765(01)00164-2

    Article  PubMed  CAS  Google Scholar 

  9. Chisholm JW, Hong J, Mills SA, Lawn RM (2003) The LXR ligand T0901317 induces severe lipogenesis in the db/db diabetic mouse. J Lipid Res 44:2039–2048. doi:10.1194/jlr.M300135-JLR200

    Article  PubMed  CAS  Google Scholar 

  10. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, Kato T, Khan R, Takayama H, Knoll R, Milting H, Chung CS, Jorde U, Naka Y, Mancini DM, Goldberg IJ, Schulze PC (2012) Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125:2844–2853. doi:10.1161/CIRCULATIONAHA.111.060889

    Article  PubMed  CAS  Google Scholar 

  11. Chu K, Miyazaki M, Man WC, Ntambi JM (2006) Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation. Mol Cell Biol 26:6786–6798. doi:10.1128/MCB.00077-06

    Article  PubMed  CAS  Google Scholar 

  12. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  PubMed  CAS  Google Scholar 

  13. Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K (2011) A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 106:447–457. doi:10.1007/s00395-011-0156-1

    Article  PubMed  CAS  Google Scholar 

  14. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, Parks DJ, Wilson JG, Tippin TK, Binz JG, Plunket KD, Morgan DG, Beaudet EJ, Whitney KD, Kliewer SA, Willson TM (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966

    Article  PubMed  CAS  Google Scholar 

  15. Crisafulli C, Di Paola R, Mazzon E, Paterniti I, Galuppo M, Genovese T, Bramanti P, Cappellani A, Cuzzocrea S (2010) Liver X receptor agonist treatment reduced splanchnic ischemia and reperfusion injury. J Leukoc Biol 87:309–321. doi:10.1189/jlb.0609438

    Article  PubMed  CAS  Google Scholar 

  16. Czibik G, Gravning J, Martinov V, Ishaq B, Knudsen E, Attramadal H, Valen G (2011) Gene therapy with hypoxia-inducible factor 1 alpha in skeletal muscle is cardioprotective in vivo. Life Sci 88:543–550. doi:10.1016/j.lfs.2011.01.006

    Article  PubMed  CAS  Google Scholar 

  17. Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 19:248–256. doi:10.1097/MOL.0b013e3282f9b54d

    Article  PubMed  CAS  Google Scholar 

  18. Haugen F, Drevon CA (2007) The interplay between nutrients and the adipose tissue. Proc Nutr Soc 66:171–182. doi:10.1017/S0029665107005423

    Article  PubMed  CAS  Google Scholar 

  19. Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA (2005) Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 46:143–153. doi:10.1194/jlr.M400348-JLR200

    Article  PubMed  CAS  Google Scholar 

  20. Heather LC, Clarke K (2011) Metabolism, hypoxia and the diabetic heart. J Mol Cell Cardiol 50:598–605. doi:10.1016/j.yjmcc.2011.01.007

    Article  PubMed  CAS  Google Scholar 

  21. Hessvik NP, Boekschoten MV, Baltzersen MA, Kersten S, Xu X, Andersen H, Rustan AC, Thoresen GH (2010) LXRβ is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux. Am J Physiol Endocrinol Metab 298:E602–E613. doi:10.1152/ajpendo.00553.2009

    Article  PubMed  CAS  Google Scholar 

  22. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  23. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383:728–731. doi:10.1038/383728a0

    Article  PubMed  CAS  Google Scholar 

  24. Jodalen H, Stangeland L, Grong K, Vik-Mo H, Lekven J (1985) Lipid accumulation in the myocardium during acute regional ischaemia in cats. J Mol Cell Cardiol 17:973–980 pii:S0022-2828(85)80077-8

    Article  PubMed  CAS  Google Scholar 

  25. Juvet LK, Andresen SM, Schuster GU, Dalen KT, Tobin KA, Hollung K, Haugen F, Jacinto S, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI (2003) On the role of liver X receptors in lipid accumulation in adipocytes. Mol Endocrinol 17:172–182

    Article  PubMed  CAS  Google Scholar 

  26. King LM, Opie LH (1998) Glucose and glycogen utilisation in myocardial ischemia–changes in metabolism and consequences for the myocyte. Mol Cell Biochem 180:3–26

    Article  PubMed  CAS  Google Scholar 

  27. Kotokorpi P, Venteclef N, Ellis E, Gustafsson JA, Mode A (2010) The human ADFP gene is a direct liver-X-receptor (LXR) target gene and differentially regulated by synthetic LXR ligands. Mol Pharmacol 77:79–86. doi:10.1124/mol.109.059063

    Article  PubMed  CAS  Google Scholar 

  28. Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, Nomura M, Yanase T, Otsu K, Usuda N, Matsumura S, Inoue K, Fushiki T, Kojima Y, Hashimoto T, Sakai F, Hirose F, Osumi T (2012) Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 287:23852–23863. doi:10.1074/jbc.M111.328708

    Article  PubMed  CAS  Google Scholar 

  29. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. doi:10.1152/physrev.00015.2009

    Article  PubMed  CAS  Google Scholar 

  30. Matsui H, Yokoyama T, Sekiguchi K, Iijima D, Sunaga H, Maniwa M, Ueno M, Iso T, Arai M, Kurabayashi M (2012) Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes. PLoS ONE 7:e33283. doi:10.1371/journal.pone.0033283

    Article  PubMed  CAS  Google Scholar 

  31. McGavock JM, Victor RG, Unger RH, Szczepaniak LS, American College of P, the American Physiological S, (2006) Adiposity of the heart, revisited. Ann Intern Med 144:517–524. pii:144/7/517

    PubMed  CAS  Google Scholar 

  32. Menendez JA, Colomer R, Lupu R (2004) Inhibition of tumor-associated fatty acid synthase activity enhances vinorelbine (Navelbine)-induced cytotoxicity and apoptotic cell death in human breast cancer cells. Oncol Rep 12:411–422

    PubMed  CAS  Google Scholar 

  33. Mitro N, Vargas L, Romeo R, Koder A, Saez E (2007) T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett 581:1721–1726. doi:10.1016/j.febslet.2007.03.047

    Article  PubMed  CAS  Google Scholar 

  34. Miyazaki M, Ntambi JM (2003) Role of stearoyl-coenzyme A desaturase in lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 68:113–121

    Article  PubMed  CAS  Google Scholar 

  35. Montessuit C, Papageorgiou I, Campos L, Lerch R (2006) Retinoic acids increase expression of GLUT4 in dedifferentiated and hypertrophied cardiac myocytes. Basic Res Cardiol 101:27–35. doi:10.1007/s00395-005-0567-y

    Article  PubMed  Google Scholar 

  36. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296. doi:10.1385/1-59745-214-9:271

    PubMed  Google Scholar 

  37. Ouvrier A, Cadet R, Vernet P, Laillet B, Chardigny JM, Lobaccaro JM, Drevet JR, Saez F (2009) LXR and ABCA1 control cholesterol homeostasis in the proximal mouse epididymis in a cell-specific manner. J Lipid Res 50:1766–1775. doi:10.1194/jlr.M800657-JLR200

    Article  PubMed  CAS  Google Scholar 

  38. Peter A, Weigert C, Staiger H, Rittig K, Cegan A, Lutz P, Machicao F, Haring HU, Schleicher E (2008) Induction of stearoyl-CoA desaturase protects human arterial endothelial cells against lipotoxicity. Am J Physiol Endocrinol Metab 295:E339–E349. doi:10.1152/ajpendo.00022.2008

    Article  PubMed  CAS  Google Scholar 

  39. Phelan CA, Weaver JM, Steger DJ, Joshi S, Maslany JT, Collins JL, Zuercher WJ, Willson TM, Walker M, Jaye M, Lazar MA (2008) Selective partial agonism of liver X receptor alpha is related to differential corepressor recruitment. Mol Endocrinol 22:2241–2249. doi:10.1210/me.2008-0041

    Article  PubMed  CAS  Google Scholar 

  40. Reue K (2011) A thematic review series: lipid droplet storage and metabolism: from yeast to man. J Lipid Res 52:1865–1868. doi:10.1194/jlr.E020602

    Article  PubMed  CAS  Google Scholar 

  41. Ruusalepp A, Czibik G, Flatebo T, Vaage J, Valen G (2007) Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases. Basic Res Cardiol 102:318–326. doi:10.1007/s00395-007-0644-5

    Article  PubMed  CAS  Google Scholar 

  42. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838. doi:10.1101/Gad.850400

    Article  PubMed  CAS  Google Scholar 

  43. Sironi L, Mitro N, Cimino M, Gelosa P, Guerrini U, Tremoli E, Saez E (2008) Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS Lett 582:3396–3400. doi:10.1016/j.febslet.2008.08.035

    Article  PubMed  CAS  Google Scholar 

  44. Skyschally A, Schulz R, Heusch G (2008) Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz 33:88–100. doi:10.1007/s00059-008-3101-9

    Article  PubMed  Google Scholar 

  45. Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S, Shulman GI, Abel ED, Goldberg IJ (2010) PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. J Clin Invest 120:3443–3454. doi:10.1172/JCI40905

    Article  PubMed  CAS  Google Scholar 

  46. Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macnaul KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG (2002) A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem 277:10021–10027. doi:10.1074/jbc.M108225200

    Article  PubMed  CAS  Google Scholar 

  47. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257

    Article  PubMed  CAS  Google Scholar 

  48. Straeter-Knowlen IM, Evanochko WT, den Hollander JA, Wolkowicz PE, Balschi JA, Caulfield JB, Ku DD, Pohost GM (1996) 1H NMR spectroscopic imaging of myocardial triglycerides in excised dog hearts subjected to 24 hours of coronary occlusion. Circulation 93:1464–1470

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki J, Shen WJ, Nelson BD, Patel S, Veerkamp JH, Selwood SP, Murphy GM Jr, Reaven E, Kraemer FB (2001) Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression. Am J Physiol Endocrinol Metab 281:E857–E866

    PubMed  CAS  Google Scholar 

  50. Tontonoz P, Kim JB, Graves RA, Spiegelman BM (1993) ADD1: a novel helix–loop–helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13:4753–4759

    PubMed  CAS  Google Scholar 

  51. Vary TC, Reibel DK, Neely JR (1981) Control of energy metabolism of heart muscle. Annu Rev Physiol 43:419–430. doi:10.1146/annurev.ph.43.030181.002223

    Article  PubMed  CAS  Google Scholar 

  52. Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, Jepsen K, Baek SH, Heyman RA, Rosenfeld MG, Schulman IG, Glass CK (2003) Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol 23:5780–5789

    Article  PubMed  CAS  Google Scholar 

  53. Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, Gong DW, Stanley WC, Sztalryd C (2011) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52:2159–2168. doi:10.1194/jlr.M017939

    Article  PubMed  CAS  Google Scholar 

  54. Weedon-Fekjaer MS, Dalen KT, Solaas K, Staff AC, Duttaroy AK, Nebb HI (2010) Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells. J Lipid Res 51:1886–1896. doi:10.1194/jlr.M004978

    Article  PubMed  CAS  Google Scholar 

  55. Wende AR, Abel ED (2010) Lipotoxicity in the heart. Biochim Biophys Acta 1801:311–319. doi:10.1016/j.bbalip.2009.09.023

    Article  PubMed  CAS  Google Scholar 

  56. Williams S, Bledsoe RK, Collins JL, Boggs S, Lambert MH, Miller AB, Moore J, McKee DD, Moore L, Nichols J, Parks D, Watson M, Wisely B, Willson TM (2003) X-ray crystal structure of the liver X receptor beta ligand binding domain: regulation by a histidine–tryptophan switch. J Biol Chem 278:27138–27143. doi:10.1074/jbc.M302260200

    Article  PubMed  CAS  Google Scholar 

  57. Wu S, Yin R, Ernest R, Li Y, Zhelyabovska O, Luo J, Yang Y, Yang Q (2009) Liver X receptors are negative regulators of cardiac hypertrophy via suppressing NF-κB signalling. Cardiovasc Res 84:119–126. doi:10.1093/cvr/cvp180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Norwegian Women’s Public Health Association (Norske Kvinners Sanitetsforening), The Norwegian Health Association (Nasjonalforeningen for folkehelsen), Novo Nordisk Foundation, UNIFOR (Legatet til Henrik Homans Minde, S.G. Sønneland Foundation, Anders Jahres fond til vitenskapens fremme, Aktieselskabet Freia Chocolade Fabriks Medisinske Fond) and The University of Oslo. Peng Lei was supported by the China Scholarship Council.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Haugen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, P., Baysa, A., Nebb, H.I. et al. Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia–reperfusion injury. Basic Res Cardiol 108, 323 (2013). https://doi.org/10.1007/s00395-012-0323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0323-z

Keywords

Navigation