Skip to main content
Log in

Glioma classification via MR images radiomics analysis

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Accurate glioma classification before surgery is of the utmost important in clinical decision making and prognosis prediction. In this paper, we investigate the impact of multi-modal MR image fusion for the differentiation of low-grade gliomas (LGG) versus high-grade gliomas (HGG) via integrative analyses of radiomic features and machine learning approaches. A set of 80 histologically confirmed gliomas patients (40 HGG and 40 LGG) obtained from the MICCAI BraTS 2019 data were involved in this study. To achieve this work, we propose to combine T1 with T2 or FLAIR modality in the non-subsampled shearlet domain. Firstly, the pre-processed source MR images are decomposed into low-frequency (LF) and several high-frequency (HF) sub-images. LF sub-images are fused using the proposed weight local features fusion rule while HF sub-images are combined based on the novel sum-modified-laplacian technique. Experimental results demonstrate that the proposed fusion approach outperformed the recent state-of-the-art approaches in terms of entropy and feature mutual information. Subsequently, a key radiomics signature was retrieved by the least absolute shrinkage and selection operator regression algorithm. Five machine learning classifiers were established and evaluated with the retrieved dataset, then with the fused dataset using tenfold cross-validation scheme. As a result, the random forest had the highest accuracy of 96.5% with 21 features selected from the raw data and 96.1% with 16 features selected from the fused data. Finally, the experimental findings confirm that the proposed aided diagnosis framework represents a promising tool to aid radiologists in differentiating HGG and LGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source images. a DataSet-1, top: MRI, bottom: CT, b dataSet-2, top: MRI-T2, bottom: MRI-T1, c dataSet-3, top: MRI-T2, bottom: MRI-GAD, d dataSet-4, top: MRI-PD, bottom: CT

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ostrom, Q., et al.: The epidemiology of glioma in adults: a “state of the science review. Neuro-oncology 16(7), 896–913 (2014)

    Article  Google Scholar 

  2. Louis, D.N., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  3. Wesseling, P., Capper, D.: WHO 2016 classification of gliomas. Neuropathol. Appl. Neurobiol. 44(2), 139–150 (2018)

    Article  Google Scholar 

  4. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5(1), 1–9 (2014)

    Google Scholar 

  5. Mohan, G., Monica, S.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Signal Process. Control 39, 139–161 (2018)

    Article  Google Scholar 

  6. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Article  Google Scholar 

  7. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Article  Google Scholar 

  8. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv:1811.02629 (2018)

  9. Zhou, M., et al.: Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am. J. Neuroradiol. 39(2), 208–216 (2018)

    Article  Google Scholar 

  10. Cho, H.-h, et al.: Classification of the glioma grading using radiomics analysis. PeerJ 6, e5982 (2018)

    Article  Google Scholar 

  11. Lotan, E., et al.: State of the art: machine learning applications in glioma imaging. Am. J. Roentgenol. 212(1), 26–37 (2019)

    Article  Google Scholar 

  12. Tian, Q., et al.: Radiomics strategy for glioma grading using texture features from multiparametric MRI. J. Mag. Resonan. Imaging 48(6), 1518–1528 (2018)

    Article  Google Scholar 

  13. Vamvakas, A., et al.: Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Physica Med. 60, 188–198 (2019)

    Article  Google Scholar 

  14. Du, J., et al.: An overview of multi-modal medical image fusion. Neurocomputing 215, 3–20 (2016)

    Article  Google Scholar 

  15. James, A.P., Dasarathy, B.V.: Medical image fusion: a survey of the state of the art. Inf. Fusion 19, 4–19 (2014)

    Article  Google Scholar 

  16. Li, S., et al.: Pixel-level image fusion: a survey of the state of the art. Inf. Fusion 33, 100–112 (2017)

    Article  Google Scholar 

  17. Mahajan, S., Singh, A.: A comparative analysis of different image fusion techniques. IPASJ Int. J. Comput. Sci. (IIJCS) 2(1), 8–15 (2014)

    Google Scholar 

  18. Yin, M., et al.: A novel image fusion algorithm based on nonsubsampled shearlet transform. Optik 125(10), 2274–2282 (2014)

    Article  Google Scholar 

  19. Wang, Z., Cuia, Z., Zhu, Y.: Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput. Biol. Med. 123, 103823 (2020)

    Article  Google Scholar 

  20. Liu, X., Mei, W., Huiqian, Du.: Structure tensor and nonsubsampled shearlet transform based algorithm for CT and MRI image fusion. Neurocomputing 235, 131–139 (2017)

    Article  Google Scholar 

  21. Manchanda, M., Sharma, R.: An improved multimodal medical image fusion algorithm based on fuzzy transform. J. Vis. Commun. Image Represent. 51, 76–94 (2018)

    Article  Google Scholar 

  22. Ouerghi, H., Mourali, O., Zagrouba, E.: Multimodal medical image fusion using modified PCNN based on linking strength estimation by MSVD transform. Int. J. Comput. Commun. Eng. 6(3), 201–211 (2017)

    Article  Google Scholar 

  23. Ouerghi, H., Mourali, O., Zagrouba, E.: Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Proc. 12(10), 1873–1880 (2018)

    Article  Google Scholar 

  24. Yang, Z., et al.: An overview of PCNN model’s development and its application in image processing. Arch. Comput. Methods Eng. 26(2), 491–505 (2019)

    Article  MathSciNet  Google Scholar 

  25. Zhou, P., et al.: Side-scan sonar image fusion based on sum-modified laplacian energy filtering and improved dual-channel impulse neural network. Appl. Sci. 10(3), 1028 (2020)

    Article  Google Scholar 

  26. Ullah, H., et al.: Multi-modality medical images fusion based on local-features fuzzy sets and novel sum-modified-Laplacian in non-subsampled shearlet transform domain. Biomed. Signal Process. Control 57, 101724 (2020)

    Article  Google Scholar 

  27. Gore, S., Tanay, C,. Jayant, J., Ingalhalikar, M.: A review of radiomics and deep predictive modeling in glioma characterization. Acad. Radiol. (2020)

  28. Wu, Y., Bo, L., Weiguo, W., et al.: Grading glioma by radiomics with feature selection based on mutual information. J. Ambient Intell. Human. Comput. 9, 1671–1682 (2018)

    Article  Google Scholar 

  29. Qi, X.-X., et al.: Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. Eur. Radiol. 28(4), 1748–1755 (2018)

    Article  Google Scholar 

  30. Wang, Q., et al.: Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: a cohort study. J. Mag. Reson. Imaging 49(3), 825–833 (2019)

    Article  Google Scholar 

  31. Su, C., et al.: Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour. Eur. Radiol. 29, 1986–1996 (2019)

    Article  Google Scholar 

  32. Cao, H., et al.: A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. Eur. Radiol. 30, 3073–3082 (2020)

    Article  Google Scholar 

  33. Rathore, S., et al.: Glioma grading via analysis of digital pathology images using machine learning. Cancers 12(3), 578 (2020)

    Article  Google Scholar 

  34. Brunese, L., et al.: An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput. Methods Prog. Biomed. 185, 105134 (2020)

    Article  Google Scholar 

  35. Saba, T., et al.: Brain tumor detection using fusion of hand crafted and deep learning features. Cognit. Syst. Res. 59, 221–230 (2020)

    Article  Google Scholar 

  36. Sudre, C.H., et al.: Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status. BMC Med. Inf. Decis. Making 20(149), 1–14 (2020)

    Google Scholar 

  37. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  38. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  39. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Map. 31(5), 798–819 (2010)

    Article  Google Scholar 

  40. Zitova, B., Flusser, J.J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  41. Easley, G., Demetrio, L., Lim, W.-Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmonic Anal. 25(1), 25–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  43. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodology) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  MathSciNet  Google Scholar 

  45. Mohammed, A., Nisha, K.L., Sathidevi, P.S.: A novel medical image fusion scheme employing sparse representation and dual PCNN in the NSCT domain. In: 2016 IEEE Region 10 Conference (TENCON). IEEE, pp. 2147–2151 (2016)

  46. Liu, X., Mei, W., Huiqian, Du.: Multi-modality medical image fusion based on image decomposition framework and nonsubsampled shearlet transform. Biomed. Signal Process. Control 40, 343–350 (2018)

    Article  Google Scholar 

  47. Jagalingam, P., Hegde, A.V.: A review of quality metrics for fused image. Aquat. Procedia 4, 133–142 (2015)

    Article  Google Scholar 

  48. Haghighat, M.B.A., Aghagolzadeh, A., Seyedarabi, H.: A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 37(5), 744–756 (2011)

    Article  MATH  Google Scholar 

  49. Hu, J., et al.: Machine-learning-based computed tomography radiomic analysis for histologic subtype classification of thymic epithelial tumours. Eur. J. Radiol. 126, 108929 (2020)

    Article  Google Scholar 

  50. Dogra, J., Jain, S., Sood, M.: Glioma extraction from MR images employing gradient based kernel selection graph cut technique. Vis. Comput. 36(5), 875–891 (2020)

    Article  Google Scholar 

  51. Ali, H., Faisal, S., Chen, K., Rada, L.: Image selective segmentation model for multi-regions within the object of interest with application to medical disease. Vis. Comput. 1–17 (2020).

  52. Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis. Comput. 36, 1869–1882 (2020)

    Article  Google Scholar 

  53. Singh, R., Aditya, G., Raghuvanshi, D.K.: Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis. Comput. 1–15 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Ouerghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerghi, H., Mourali, O. & Zagrouba, E. Glioma classification via MR images radiomics analysis. Vis Comput 38, 1427–1441 (2022). https://doi.org/10.1007/s00371-021-02077-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02077-7

Keywords

Navigation