Skip to main content
Log in

Isogeometric analysis for solving discontinuous two-phase engineering problems with precise and explicit interface representation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a new computational method for solving two-phase engineering problems. The novelty of this approach lies in its ability to perform the analysis over the exact two-phase geometry. The geometry is defined by a spline-based representation and constructed based on the level-set method. The level-set-based geometry is mapped into a spline-based geometry using an untrimming technique that is newly developed in this paper. The spline-based representation is defined over unstructured meshes enabling precise representations of geometrically complex domains. An analysis-suitable mechanical model that accurately replicates the geometry is constructed and the governing equations are solved using the isogeometric analysis method. The interface between phases is explicitly represented by cubic B-spline curves, allowing for the evaluation of the solution field and various physical measures over its exact geometry. Additionally, algorithms that allow for changing the continuity of the solution field between the phases while precisely preserving the discontinuous two-phase domain are developed. Consistent analytical sensitivity analysis is formulated for generating the geometrical and mechanical models to allow for solving engineering problems with moving boundaries following the gradient-based approach. The proposed approach is tested for solving Poisson’s equation, linear elasticity, topology optimization involving linear elasticity for compliance minimization, and two-phase flow problems. The results expose the capability of the proposed approach to solve two-phase engineering problems while accurately representing the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Algorithm 4
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Collins JB, Levine H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31:6119. https://doi.org/10.1103/PhysRevB.31.6119

    Article  Google Scholar 

  2. Singer-Loginova I, Singer H (2008) The phase field technique for modeling multiphase materials. Rep Prog Phys 71:106501. https://doi.org/10.1088/0034-4885/71/10/106501

    Article  Google Scholar 

  3. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge. https://doi.org/10.1017/S0263574799212404

    Book  Google Scholar 

  4. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169:503–555. https://doi.org/10.1006/jcph.2000.6657

    Article  MathSciNet  Google Scholar 

  5. Saurel R, Pantano C (2018) Diffuse-interface capturing methods for compressible two-phase flows. Annu Rev Fluid Mech 50:105–130. https://doi.org/10.1146/annurev-fluid-122316-050109

    Article  MathSciNet  Google Scholar 

  6. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48. https://doi.org/10.1051/cocv:2002070

    Article  MathSciNet  Google Scholar 

  7. Bourdin B, Chambolle A (2006) The phase-field method in optimal design. In: IUTAM symposium on topological design optimization of structures, machines and materials. Springer, London, pp 207–215. https://doi.org/10.1007/1-4020-4752-5_21

  8. Folch R, Casademunt J, Hernández-Machado A, Ramirez-Piscina L (1999) Phase-field model for Hele–Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E 60:1724. https://doi.org/10.1103/PhysRevE.60.1724

    Article  Google Scholar 

  9. Aranson I, Kalatsky V, Vinokur V (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118. https://doi.org/10.1103/PhysRevLett.85.118

    Article  Google Scholar 

  10. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5\(<\)601::AID-NME598\(>\)3.0.CO;2-S

  11. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J

  12. Burman E, Fernández MA, Hansbo P (2006) Continuous interior penalty finite element method for Oseen’s equations. SIAM J Numer Anal 44:1248–1274. https://doi.org/10.1137/040617686

    Article  MathSciNet  Google Scholar 

  13. Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104:472–501. https://doi.org/10.1002/nme.4823

    Article  MathSciNet  Google Scholar 

  14. Villanueva CH, Maute K (2017) CutFEM topology optimization of 3D laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473. https://doi.org/10.1016/j.cma.2017.03.007

    Article  MathSciNet  Google Scholar 

  15. Andreasen CS, Elingaard MO, Aage N (2020) Level set topology and shape optimization by density methods using cut elements with length scale control. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02527-1

    Article  MathSciNet  Google Scholar 

  16. Chessa J, Belytschko T (2003) An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension. Int J Numer Methods Eng 58:2041–2064. https://doi.org/10.1002/nme.946

    Article  MathSciNet  Google Scholar 

  17. Sauerland H, Fries T-P (2013) The stable XFEM for two-phase flows. Comput Fluids 87:41–49. https://doi.org/10.1016/j.compfluid.2012.10.017

    Article  MathSciNet  Google Scholar 

  18. Lawry M, Maute K (2015) Level set topology optimization of problems with sliding contact interfaces. Struct Multidiscip Optim 52:1107–1119. https://doi.org/10.1007/s00158-015-1301-5

    Article  MathSciNet  Google Scholar 

  19. Fries T-P (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75:503–532. https://doi.org/10.1002/nme.2259

    Article  MathSciNet  Google Scholar 

  20. Hansbo P, Larson MG, Zahedi S (2014) A cut finite element method for a Stokes interface problem. Appl Numer Math 85:90–114. https://doi.org/10.1016/j.apnum.2014.06.009

    Article  MathSciNet  Google Scholar 

  21. Claus S, Kerfriden P (2019) A CutFEM method for two-phase flow problems. Comput Methods Appl Mech Eng 348:185–206. https://doi.org/10.1016/j.cma.2019.01.009

    Article  MathSciNet  Google Scholar 

  22. Donea J, Huerta A, Ponthot J-P, Rodríguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. In: Encyclopedia of computational mechanics

  23. Kagan P, Fischer A, Bar-Yoseph PZ (1998) New B-spline finite element approach for geometrical design and mechanical analysis. Int J Numer Methods Eng 41:435–458. https://doi.org/10.1002/(SICI)1097-0207(19980215)41:3\(<\)435::AID-NME292\(>\)3.0.CO;2-U

  24. Kagan P, Fischer A, Bar-Yoseph PZ (2003) Mechanically based models: adaptive refinement for B-spline finite element. Int J Numer Methods Eng 57:1145–1175. https://doi.org/10.1002/nme.717

    Article  Google Scholar 

  25. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  Google Scholar 

  26. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, London

    Book  Google Scholar 

  27. Kim H-J, Seo Y-D, Youn S-K (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198:2982–2995. https://doi.org/10.1016/j.cma.2009.05.004

    Article  Google Scholar 

  28. Scholz F, Mantzaflaris A, Jüttler B (2019) First order error correction for trimmed quadrature in isogeometric analysis. In: Advanced finite element methods with applications: selected papers from the 30th Chemnitz finite element symposium 2017, 30. Springer, London, pp 297–321. https://doi.org/10.1007/978-3-030-14244-5_15

  29. Meßmer M, Teschemacher T, Leidinger LF, Wüchner R, Bletzinger K-U (2022) Efficient CAD-integrated isogeometric analysis of trimmed solids. Comput Methods Appl Mech Eng 400:115584. https://doi.org/10.1016/j.cma.2022.115584

    Article  MathSciNet  Google Scholar 

  30. Loibl M, Leonetti L, Reali A, Kiendl J (2023) Patch-wise quadrature of trimmed surfaces in isogeometric analysis. Preprint arXiv:2306.14521

  31. Lieu QX, Lee J (2017) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272–302. https://doi.org/10.1016/j.cma.2017.05.009

    Article  MathSciNet  Google Scholar 

  32. Hosseini BS, Turek S, Möller M, Palmes C (2017) Isogeometric analysis of the Navier–Stokes–Cahn–Hilliard equations with application to incompressible two-phase flows. J Comput Phys 348:171–194. https://doi.org/10.1016/j.jcp.2017.07.029

    Article  MathSciNet  Google Scholar 

  33. Yan J, Lin S, Bazilevs Y, Wagner G (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789. https://doi.org/10.1016/j.compfluid.2018.04.017

    Article  MathSciNet  Google Scholar 

  34. Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJ (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150. https://doi.org/10.1016/j.cma.2012.03.017. (Higher order finite element and isogeometric methods)

    Article  MathSciNet  Google Scholar 

  35. Wei X, Marussig B, Antolin P, Buffa A (2021) Immersed boundary-conformal isogeometric method for linear elliptic problems. Comput Mech 68:1385–1405. https://doi.org/10.1007/s00466-021-02074-6

    Article  MathSciNet  Google Scholar 

  36. Jiang W, Annavarapu C, Dolbow JE, Harari I (2015) A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int J Numer Methods Eng 104:676–696. https://doi.org/10.1002/nme.4766

    Article  MathSciNet  Google Scholar 

  37. Elfverson D, Larson MG, Larsson K (2018) CutIGA with basis function removal. Adv Model Simul Eng Sci 5:1–19. https://doi.org/10.1186/s40323-018-0099-2

    Article  Google Scholar 

  38. Elfverson D, Larson MG, Larsson K (2019) A new least squares stabilized Nitsche method for cut isogeometric analysis. Comput Methods Appl Mech Eng 349:1–16. https://doi.org/10.1016/j.cma.2019.02.011

    Article  MathSciNet  Google Scholar 

  39. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87:541–565. https://doi.org/10.1002/nme.3121

    Article  MathSciNet  Google Scholar 

  40. Ghorashi SS, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Methods Eng 89:1069–1101. https://doi.org/10.1002/nme.3277

    Article  MathSciNet  Google Scholar 

  41. Noël L, Schmidt M, Doble K, Evans J, Maute K (2022) XIGA: an extended isogeometric analysis approach for multi-material problems. Comput Mech 70:1281–1308. https://doi.org/10.1007/s00466-022-02200-y

    Article  MathSciNet  Google Scholar 

  42. Schmidt M, Noël L, Doble K, Evans JA, Maute K (2023) Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines. Comput Mech 71:1179–1203. https://doi.org/10.1007/s00466-023-02306-x

    Article  MathSciNet  Google Scholar 

  43. Noël L, Schmidt M, Messe C, Evans J, Maute K (2020) Adaptive level set topology optimization using hierarchical B-splines. Struct Multidiscip Optim 62:1669–1699. https://doi.org/10.1007/s00158-020-02584-6

    Article  MathSciNet  Google Scholar 

  44. Sangalli G, Takacs T, Vázquez R (2016) Unstructured spline spaces for isogeometric analysis based on spline manifolds. Comput Aided Geomet Des 47:61–82. https://doi.org/10.1016/j.cagd.2016.05.004

    Article  MathSciNet  Google Scholar 

  45. Toshniwal D, Speleers H, Hughes TJ (2017) Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations. Comput Methods Appl Mech Eng 327:411–458. https://doi.org/10.1016/j.cma.2017.06.008

    Article  MathSciNet  Google Scholar 

  46. Kapl M, Sangalli G, Takacs T (2019) Isogeometric analysis with \(C^{1}\) functions on planar, unstructured quadrilateral meshes. SMAI J Comput Math 5:67–86. https://doi.org/10.5802/smai-jcm.52

    Article  Google Scholar 

  47. Shakour E, Amir O (2021) Topology optimization with precise evolving boundaries based on IGA and untrimming techniques. Comput Methods Appl Mech Eng 374:113564. https://doi.org/10.1016/j.cma.2020.113564

    Article  MathSciNet  Google Scholar 

  48. Shakour E, Amir O (2022) Stress-constrained topology optimization with precise and explicit geometric boundaries. Struct Multidiscip Optim 65:1–21. https://doi.org/10.1007/s00158-021-03115-7

    Article  MathSciNet  Google Scholar 

  49. Gomes A, Voiculescu I, Jorge J, Wyvill B, Galbraith C (2009) Implicit curves and surfaces: mathematics, data structures and algorithms. Springer, London

    Book  Google Scholar 

  50. Wenger R (2013) Isosurfaces: geometry, topology, and algorithms, an A K Peters book. CRC Press, London

    Book  Google Scholar 

  51. Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T, Sederberg T (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221. https://doi.org/10.1016/j.cma.2012.11.001

    Article  MathSciNet  Google Scholar 

  52. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph (TOG) 22:477–484. https://doi.org/10.1145/882262.882295

    Article  Google Scholar 

  53. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJ (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156. https://doi.org/10.1002/nme.3167

    Article  Google Scholar 

  54. Scott M, Li X, Sederberg T, Hughes T (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222. https://doi.org/10.1016/j.cma.2011.11.022

    Article  MathSciNet  Google Scholar 

  55. Takacs T (2023) Approximation properties over self-similar meshes of curved finite elements and applications to subdivision based isogeometric analysis. Preprint arXiv:2307.10403. https://doi.org/10.48550/arXiv.2307.10403

  56. Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200. https://doi.org/10.1016/S0045-7825(01)00215-8

    Article  MathSciNet  Google Scholar 

  57. Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393. https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  Google Scholar 

  58. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373. https://doi.org/10.1002/nme.1620240207

    Article  MathSciNet  Google Scholar 

  59. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, London

    Book  Google Scholar 

  60. Takacs T, Toshniwal D (2023) Almost-C1 splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems. Comput Methods Appl Mech Eng 403:115640. https://doi.org/10.1016/j.cma.2022.115640

    Article  Google Scholar 

  61. Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586. https://doi.org/10.1016/j.cma.2014.11.002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Bert Jüttler and associate Prof. Oded Amir for the informative discussions and valuable suggestions during the work on this paper.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Shakur.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Control points locations

This appendix refers to Step 4 in Sect. 2.1, which deals with determining the locations of the control points \(\varvec{P}^G\). Since the geometry in this paper is primarily developed based on a level-set function, the locations of \(\varvec{P}^G\) are represented as functions of the control parameters of the level-set function \(\varvec{\alpha }\), i.e., \(\varvec{P}^G(\varvec{\alpha })\). The example in Sect. 2 is used to present the computation procedure. Figure 28 shows the physical domain of \(S^0\) with cross marks that are located at the corners of the Bézier patches. Computing \(\varvec{P}^G\) starts by determining the values of the level-set function, \(\phi \), at these points. This computation is done as follows:

  1. 1.

    Compute the level-set function values at the inner corners of the patches in the physical domain. These points are highlighted with blue cross marks in Fig. 28. This computation depends on the level-set function representation. In this paper, the level-set function is represented as a B-spline surface; therefore, the value of the level-set function at a certain point i with the parametric coordinates of \((\xi _i,\eta _i)\) is computed by

    $$\begin{aligned} \phi _i=\sum _{j=1}^{N_{\alpha }} \alpha _j B_j(\xi _i,\eta _i), \end{aligned}$$
    (28)

    where \(N_{\alpha }\) is the number of control parameters of the level-set function and \(B_j\) is the basis function that corresponds to the control parameter \(\alpha _j\)

  2. 2.

    To avoid untrimming complications along the boundary of the design domain, assign all the evaluation points that are located on the boundary of the design domain with \(\phi \) values that correspond to the adjacent layer of evaluation points to the interior of the design domain. For instance, in Fig. 28, all the red cross mark points are assigned with the \(\phi \) values that correspond to the blue cross mark points in the adjacent layer.

Fig. 28
figure 28

Physical domain of \(S^0\)—demonstrating the evaluation points of the level-set function

Afterward, the control points, \(\varvec{P}^G\), of the trimmed patches are located according to the trimming manner across the patch. For each trimmed edge in a trimmed patch, we define a weighting parameter \(w_{i-j}\) such as

$$\begin{aligned} w_{i-j}=1-\frac{\phi _i}{\phi _i-\phi _j}, \end{aligned}$$
(29)

where i and j are the indices of the vertices at the end of the trimmed edge. \(\phi _i\) and \(\phi _j\) represent the values of the level-set function at the vertices i and j. Since this paper deals with quadrilateral faces with four edges that could be trimmed, four weighting parameters could be defined: \(w_{1-2}\), \(w_{2-3}\), \(w_{3-4}\) and \(w_{1-4}\) as shown in Fig. 29. If an edge is not trimmed, then the associated weighting parameter is not defined. Note that the direction of computing the weighting parameter is important, while \(w_{i-j}=1-w_{j-i}\).

Fig. 29
figure 29

Demonstrating the weighting parameters \(w_{i-j}\)

Having the weighting parameters for a trimmed patch, the control points \(\varvec{P}^G\) that correspond to the same patch are computed as follows:

$$\begin{aligned} {P_x}^G_i&= \sum _{j=1}^{4} f_{ij}^x(w_{1-2}, w_{2-3},w_{3-4},w_{1-4}) X_j, \end{aligned}$$
(30a)
$$\begin{aligned} {P_y}^G_i&= \sum _{j=1}^{4} f_{ij}^y(w_{1-2}, w_{2-3},w_{3-4},w_{1-4}) Y_j, \end{aligned}$$
(30b)

where

$$\begin{aligned} f_{ij}^x&= a_{ij}^x + b_{ij}^x w_{1-2} + c_{ij}^x w_{2-3} + d_{ij}^x w_{3-4} + e_{ij}^x w_{1-4}; \end{aligned}$$
(31a)
$$\begin{aligned} f_{ij}^y&= a_{ij}^y + b_{ij}^y w_{1-2} + c_{ij}^y w_{2-3} + d_{ij}^y w_{3-4} + e_{ij}^y w_{1-4}; \end{aligned}$$
(31b)

\(X_j\) and \(Y_j\) are the coordinates of the control points corresponding to the corner of the face. The parameters \(a_{ij}^x\), \(b_{ij}^x\), \(c_{ij}^x\), \(d_{ij}^x\), \(e_{ij}^x\), \(a_{ij}^y\), \(b_{ij}^y\), \(c_{ij}^y\), \(d_{ij}^y\) and \(e_{ij}^y\) differ for each case and are chosen in a way that does not cause an overlapping between the faces in the mesh. In the following, we provide the non-zero values of these parameters for each case (Figs. 30, 31, 32, 33):

Fig. 30
figure 30

Case 1—locating the control points \(\varvec{P}^G\)

\(\underline{{\textbf {Case}}\varvec{1}:}\)

\(a_{ij}^x\)

i

1

2

3

3

3

4

5

5

6

7

7

7

8

9

10

11

12

12

13

j

1

2

1

2

4

2

2

4

2

2

3

4

2

4

4

4

3

4

3

v

1

1

0.5

0.25

0.25

1

0.5

0.5

1

0.33

0.33

0.33

1

1

1

1

0.5

0.5

1

\(d_{ij}^x\)

i

3

3

5

5

7

7

10

10

11

11

12

12

j

3

4

3

4

3

4

3

4

3

4

3

4

v

0.25

-0.25

0.5

-0.5

0.33

-0.33

0.5

-0.5

1

-1

0.5

-0.5

\(a_{ij}^y\)

i

1

2

3

3

4

4

5

6

7

8

9

10

11

12

13

j

1

2

1

3

2

3

3

3

3

3

4

3

3

3

3

v

1

1

0.5

0.5

0.5

0.5

1

1

1

1

1

1

1

1

1

\(c_{ij}^y\)

i

3

3

4

4

5

5

6

6

7

7

8

8

j

2

3

2

3

2

3

2

3

2

3

2

3

v

0.25

\(-\) 0.25

0.5

\(-\) 0.5

0.5

\(-\) 0.5

1

\(-\) 1

0.33

\(-\) 0.33

0.5

\(-\) 0.5

\(\underline{{\textbf {Case}}\,\varvec{2}:}\)

Fig. 31
figure 31

Case 2—locating the control points \(\varvec{P}^G\)

\(a_{ij}^x\)

i

1

2

3

4

5

6

7

8

9

10

j

1

1

1

1

4

2

2

2

2

3

v

1

1

1

1

1

1

1

1

1

1

\(a_{ij}^y\)

i

1

2

2

3

4

5

6

7

7

8

9

10

j

1

1

4

4

4

4

2

2

3

3

3

3

v

1

0.5

0.5

1

1

1

1

0.5

0.5

1

1

1

\(c_{ij}^y\)

i

7

7

8

8

9

9

j

2

3

2

3

2

3

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

\(e_{ij}^y\)

i

2

2

3

3

4

4

j

1

4

1

4

1

4

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

\(\underline{{\textbf {Case}}\,\varvec{3}:}\)

Fig. 32
figure 32

Case 3—locating the control points \(\varvec{P}^G\)

\(a_{ij}^x\)

i

1

2

3

4

5

5

6

7

8

9

10

11

12

13

13

14

15

16

17

17

j

1

2

3

4

1

2

2

2

2

2

2

4

4

3

4

1

1

1

1

2

v

1

1

1

1

0.5

0.5

1

1

1

1

1

1

1

0.5

0.5

1

1

1

0.67

0.33

i

18

18

19

19

19

20

20

20

21

21

21

22

22

23

23

23

    

j

1

2

1

2

4

1

2

4

1

2

4

2

4

2

3

4

    

v

0.5

0.5

0.38

0.5

0.12

0.25

0.5

0.25

0.12

0.5

0.38

0.5

0.5

0.33

0.33

0.33

    

\(b_{ij}^x\)

i

5

5

6

6

7

7

17

17

18

18

19

19

20

20

21

21

j

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

0.33

\(-\) 0.33

0.5

\(-\) 0.5

0.38

\(-\) 0.38

0.25

\(-\) 0.25

0.12

\(-\) 0.12

\(d_{ij}^x\)

i

11

11

12

12

13

13

19

19

20

20

21

21

22

22

23

23

j

3

4

3

4

3

4

3

4

3

4

3

4

3

4

3

4

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

0.12

\(-\) 0.12

0.25

\(-\) 0.25

0.38

\(-\) 0.38

0.5

\(-\) 0.5

0.33

\(-\) 0.33

\(a_{ij}^y\)

i

1

2

3

4

5

6

7

8

8

9

10

11

12

13

14

14

15

16

17

17

j

1

2

3

4

1

1

1

2

3

3

3

3

3

3

1

4

4

4

1

4

v

1

1

1

1

1

1

1

0.5

0.5

1

1

1

1

1

0.5

0.5

1

1

0.67

0.33

i

18

18

19

19

19

20

20

20

21

21

21

22

23

       

j

1

4

1

3

4

1

3

4

1

3

4

3

3

       

v

0.5

0.5

0.38

0.25

0.38

0.25

0.5

0.25

0.12

0.75

0.12

1

1

       

\(c_{ij}^y\)

i

8

8

9

9

10

10

19

19

20

20

21

21

22

22

23

23

j

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

0.12

\(-\) 0.12

0.25

\(-\) 0.25

0.38

\(-\) 0.38

0.5

\(-\) 0.5

0.33

\(-\) 0.33

\(e_{ij}^y\)

i

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

j

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

0.33

\(-\) 0.33

0.5

\(-\) 0.5

0.38

\(-\) 0.38

0.25

\(-\) 0.25

0.12

\(-\) 0.12

\(\underline{{\textbf {Case}}\,\varvec{4}:}\)

Fig. 33
figure 33

Case 4—locating the control points \(\varvec{P}^G\)

\(a_{ij}^x\)

i

1

2

3

4

5

6

7

8

9

10

j

1

1

1

1

4

2

2

2

2

3

v

1

1

1

1

1

1

1

1

1

1

\(a_{ij}^y\)

i

1

2

2

3

4

5

6

7

7

8

9

10

j

1

1

4

4

4

4

2

2

3

3

3

3

v

1

0.5

0.5

1

1

1

1

0.5

0.5

1

1

1

\(e_{ij}^y\)

i

2

2

3

3

4

4

7

7

8

8

9

9

j

1

4

1

4

1

4

2

3

2

3

2

3

v

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

0.5

\(-\) 0.5

1

\(-\) 1

0.5

\(-\) 0.5

Appendix 2: Boundary representation

A significant advantage of the proposed approach is its ability to represent explicitly and precisely the boundaries of the phases in the mechanical and the geometrical models as a set of B-spline curves. Corresponding to the bi-cubic spline-based meshes that are used in this paper, all the B-spline boundary curves will be of degree 3. These boundaries are described as periodic curves whose control points and knots vectors are assembled according to the boundary polygons of the unstructured mesh.

We demonstrate the procedure for extracting the boundary curves using the example in Fig. 34. Black and red lines in Fig. 34a, b represent unit and zero knot intervals. The boundary polygons are drawn with thick lines. Boundary control points are colored blue, and all the other control points are colored black. This example has two boundary curves: the inner boundary curve that constitutes the interface between the phases, and the outer boundary curve which is also the boundary of the design domain. We show how these two curves are extracted, while first, we focus on extracting the inner boundary curve.

Initially, the control points and knots intervals of each boundary are sequentially collected in vectors \(\varvec{P}^c\) and \(\varvec{ed}\). The number of control points in \(\varvec{P}^c\) is denoted by N. The order of control points of each boundary curve is depicted in Fig. 34b. For the inner boundary curve, these vectors are

$$\begin{aligned} \varvec{P}^{c}&= [P^{c}_1\;P^{c}_2\;P^{c}_3\;P^{c}_4\;P^{c}_5\;P^{c}_6\; P^{c}_7\;P^{c}_8\;P^{c}_9\;P^{c}_{10}\; P^{c}_{11}\;P^{c}_{12}],\\ \varvec{ed}&= [ed_1\;ed_2\;ed_3\;ed_4\;ed_5\;ed_6\;ed_7\;ed_8\;ed_9\;ed_{10}\;ed_{11}\;ed_{12}]=[1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1\;1]. \end{aligned}$$

Afterward, denoting the vector of control points and the knots vector of a boundary curve by \(\tilde{P}^c\) and \(\tilde{k}\), respectively, these vectors are assembled according to the following algorithm:

Algorithm 5
figure e

The algorithm for assembling the control points and the knots vectors for a single boundary curve.

After applying Algorithm 5 to \(\varvec{P}^c\) and \(\varvec{ed}\) of the inner boundary polygon, the obtained control points and knots vector of the boundary curve are

$$\begin{aligned} \varvec{\tilde{P}}^{c}&= [P^{c}_1\;P^{c}_2\;P^{c}_3\;P^{c}_4\;P^{c}_5\;P^{c}_6\; P^{c}_7\;P^{c}_8\;P^{c}_9\;P^{c}_{10}\; P^{c}_{11}\;P^{c}_{12}\;P^{c}_1\;P^{c}_2\;P^{c}_3],\\ \varvec{k}&= [-2\;\;-1\;\;0\;\;1\;\;2\;\;3\;\;4\;\;5\;\;6\;\;7\;\;8\;\;9\;\;10\;\;11\;\;12\;\;13\;\;14\;\;15\;\;16]. \end{aligned}$$

Applying the same procedure for the outer boundary polygon, the following vectors are obtained:

$$\begin{aligned} \varvec{P}^{c}&= [P^{c}_1\;P^{c}_2\;P^{c}_3...\;P^{c}_{28}],\\ \varvec{ed}&= [0\;\;1\;\;1\;\;1\;\;1\;\;1\;\;0\;\;0\;\;1\;\;1\;\;1\;\;1\;\;1\;\;0\;\;0\;\;1\;\;1\;\;1\;\;1\;\;1\;\;0\;\;0\;\;1\;\;1\;\;1\;\;1\;\;1\;\;0].\\ \varvec{\tilde{P}}^{c}&= [P^{c}_1\;P^{c}_2\;P^{c}_3...\;P^{c}_{28}\;P^{c}_1\;P^{c}_2\;P^{c}_3]\\ \varvec{k}&= [-1\;\;0\;\;0\;\;0\;\;1\;\;2\;\;3\;\;4\;\;5\;\;5\;\;5\;\;6\;\;7\;\;8\;\;9\;\;10\;\;10\;\;10\;\;11\;\;12\;\;13\;\;14\;\;15\;\;15\;\;15 \;\;16\;\;17\;\;18\;\;19\;\;20\;\;20\;\;20\;\;21\;\;22\;\;23]. \end{aligned}$$

The B-spline boundary curves are highlighted in green on top of the physical domain in Fig. 34c.

Fig. 34
figure 34

An example to demonstrate the procedure of extracting the boundaries of the phases

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakur, E. Isogeometric analysis for solving discontinuous two-phase engineering problems with precise and explicit interface representation. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01952-w

Keywords

Navigation