Skip to main content
Log in

Stabilized isogeometric collocation methods for hyperbolic conservation laws

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We introduce stabilized spline collocation schemes for the numerical solution of nonlinear, hyperbolic conservation laws. A nonlinear, residual-based viscosity stabilization is combined with a projection stabilization-inspired linear operator to stabilize the scheme in the presence of shocks and prevent the propagation of spurious, small-scale oscillations. Due to the nature of collocation schemes, these methods possess the possibility for greatly reduced computational cost of high-order discretizations. Numerical results for the linear advection, Burgers, Buckley–Leverett, and Euler equations show that the scheme is robust in the presence of shocks while maintaining high-order accuracy on smooth problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  2. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  MATH  Google Scholar 

  3. Evans JA, Bazilevs Y, Babuška I, Hughes TJ (2009) n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741

    Article  MathSciNet  MATH  Google Scholar 

  4. Sande E, Manni C, Speleers H (2020) Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis. Numer Math 144(4):889–929

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan A, Sande E (2019) Approximation in fem, dg and iga: a theoretical comparison. Numer Math 143:923–942

    Article  MathSciNet  MATH  Google Scholar 

  6. Reali A, Hughes TJ (2015) An introduction to isogeometric collocation methods. In: Beer G, Bordas S (eds) Isogeometric methods for numerical simulation. Springer, pp 173–204

  7. Auricchio F, Da Veiga LB, Hughes T, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math Models Methods Appl Sci 20(11):2075–2107

    Article  MathSciNet  MATH  Google Scholar 

  8. Schillinger D, Evans JA, Reali A, Scott MA, Hughes TJ (2013) Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput Methods Appl Mech Eng 267:170–232

    Article  MathSciNet  MATH  Google Scholar 

  9. Botella O (2002) On a collocation B-spline method for the solution of the Navier–Stokes equations. Comput Fluids 31(4–7):397–420

    Article  MathSciNet  MATH  Google Scholar 

  10. Kravchenko AG, Moin P, Shariff K (1999) B-spline method and zonal grids for simulations of complex turbulent flows. J Comput Phys 151(2):757–789

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee M, Moser RD (2015) Direct numerical simulation of turbulent channel flow up to \({R}e_\tau \approx 5200\). J Fluid Mech 774:395–415

    Article  Google Scholar 

  12. Aronson RM, Evans JA (2023) Divergence-conforming isogeometric collocation methods for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 410:115990. https://doi.org/10.1016/j.cma.2023.115990

    Article  MathSciNet  MATH  Google Scholar 

  13. Aronson RM, Wetterer-Nelson C, Evans JA (2023) Stabilized isogeometric collocation methods for scalar transport and incompressible fluid flow. arXiv preprint arXiv:2306.00601

  14. Jaeschke A, Möller M (2020) High-order isogeometric methods for compressible flows: I: scalar conservation laws. Numerical methods for flows: FEF 2017 selected contributions, 21–29

  15. Möller M, Jaeschke A (2020) High-order isogeometric methods for compressible flows: II: compressible Euler equations. Numerical methods for flows: FEF 2017 selected contributions, 31–39

  16. Duvigneau R (2018) Isogeometric analysis for compressible flows using a discontinuous Galerkin method. Comput Methods Appl Mech Eng 333:443–461

    Article  MathSciNet  MATH  Google Scholar 

  17. Persson P-O, Peraire J (2006) Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA aerospace sciences meeting and exhibit. Reno, NV, pp 112

  18. Guermond J-L, Pasquetti R, Popov B (2011) Entropy viscosity method for nonlinear conservation laws. J Comput Phys 230(11):4248–4267

    Article  MathSciNet  MATH  Google Scholar 

  19. Stiernström V, Lundgren L, Nazarov M, Mattsson K (2021) A residual-based artificial viscosity finite difference method for scalar conservation laws. J Comput Phys 430:110100

    Article  MathSciNet  MATH  Google Scholar 

  20. Tominec I, Nazarov M (2023) Residual viscosity stabilized rbf-fd methods for solving nonlinear conservation laws. J Sci Comput 94(1):14

    Article  MathSciNet  MATH  Google Scholar 

  21. Nazarov M, Larcher A (2017) Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity. Comput Methods Appl Mech Eng 317:128–152

    Article  MathSciNet  MATH  Google Scholar 

  22. Braack M, Burman E (2006) Local projection stabilization for the oseen problem and its interpretation as a variational multiscale method. SIAM J Numer Anal 43(6):2544–2566

    Article  MathSciNet  MATH  Google Scholar 

  23. Johnson RW (2005) Higher order B-spline collocation at the Greville abscissae. Appl Numer Math 52(1):63–75

    Article  MathSciNet  MATH  Google Scholar 

  24. Demko S (1985) On the existence of interpolating projections onto spline spaces. J Approx Theory 43(2):151–156

    Article  MathSciNet  MATH  Google Scholar 

  25. Montardini M, Sangalli G, Tamellini L (2017) Optimal-order isogeometric collocation at Galerkin superconvergent points. Comput Methods Appl Mech Eng 316:741–757

    Article  MathSciNet  MATH  Google Scholar 

  26. Anitescu C, Jia Y, Zhang YJ, Rabczuk T (2015) An isogeometric collocation method using superconvergent points. Comput Methods Appl Mech Eng 284:1073–1097

    Article  MathSciNet  MATH  Google Scholar 

  27. Jia R-Q (1988) Spline interpolation at knot averages. Constr Approx 4:1–7

    Article  MathSciNet  MATH  Google Scholar 

  28. Chan J, Evans JA (2018) Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion. Comput Methods Appl Mech Eng 333:22–54

    Article  MathSciNet  MATH  Google Scholar 

  29. Kılıç E, Stanica P (2013) The inverse of banded matrices. J Comput Appl Math 237(1):126–135

    Article  MathSciNet  MATH  Google Scholar 

  30. Bressan A, Takacs S (2019) Sum factorization techniques in isogeometric analysis. Comput Methods Appl Mech Eng 352:437–460

    Article  MathSciNet  MATH  Google Scholar 

  31. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488

    Article  MATH  Google Scholar 

  32. Sherwin S, Karniadakis GE (1995) A triangular spectral element method; applications to the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 123(1–4):189–229

    Article  MathSciNet  MATH  Google Scholar 

  33. Voet Y, Sande E, Buffa A (2023) A mathematical theory for mass lumping and its generalization with applications to isogeometric analysis. Comput Methods Appl Mech Eng 410:116033

    Article  MathSciNet  MATH  Google Scholar 

  34. Evans JA, Hiemstra RR, Hughes TJ, Reali A (2018) Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput Methods Appl Mech Eng 338:208–240

    Article  MathSciNet  MATH  Google Scholar 

  35. Warburton T, Hagstrom T (2008) Taming the cfl number for discontinuous Galerkin methods on structured meshes. SIAM J Numer Anal 46(6):3151–3180

    Article  MathSciNet  MATH  Google Scholar 

  36. Zampieri E, Pavarino LF (2021) Isogeometric collocation discretizations for acoustic wave problems. Comput Methods Appl Mech Eng 385:114047

    Article  MathSciNet  MATH  Google Scholar 

  37. Guermond J-L, Popov B (2014) Viscous regularization of the Euler equations and entropy principles. SIAM J Appl Math 74(2):284–305

    Article  MathSciNet  MATH  Google Scholar 

  38. Nazarov M (2013) Convergence of a residual based artificial viscosity finite element method. Comput Math Appl 65(4):616–626

    Article  MathSciNet  MATH  Google Scholar 

  39. Burman E (2023) Some observations on the interaction between linear and nonlinear stabilization for continuous finite element methods applied to hyperbolic conservation laws. SIAM J Sci Comput 45(1):96–122

    Article  MathSciNet  MATH  Google Scholar 

  40. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes T (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840

    Article  MathSciNet  MATH  Google Scholar 

  41. Cockburn B, Shu C-W (1991) The Runge–Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math Model Numer Anal 25(3):337–361

    Article  MathSciNet  MATH  Google Scholar 

  42. Wahlbin LB (1991) Local behavior in finite element methods. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis. Elsevier, pp 354–522

  43. Guermond J-L, Pasquetti R (2008) Entropy-based nonlinear viscosity for fourier approximations of conservation laws. C R Math 346(13–14):801–806

    Article  MathSciNet  MATH  Google Scholar 

  44. Kurganov A, Petrova G, Popov B (2007) Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J Sci Comput 29(6):2381–2401

    Article  MathSciNet  MATH  Google Scholar 

  45. Gerritsen MG, Durlofsky LJ (2005) Modeling fluid flow in oil reservoirs. Annu Rev Fluid Mech 37:211–238

    Article  MATH  Google Scholar 

  46. Christov I, Popov B (2008) New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J Comput Phys 227(11):5736–5757

    Article  MathSciNet  MATH  Google Scholar 

  47. Coats KH (2000) A note on impes and some impes-based simulation models. SPE J 5(03):245–251

    Article  Google Scholar 

  48. Osher S (1984) Riemann solvers, the entropy condition, and difference approximations. SIAM J Numer Anal 21(2):217–235

    Article  MathSciNet  MATH  Google Scholar 

  49. Toro EF (2013) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin

    Google Scholar 

  50. Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J Comput Phys 83(1):32–78

    Article  MathSciNet  MATH  Google Scholar 

  51. Fu L, Hu XY, Adams NA (2016) A family of high-order targeted eno schemes for compressible-fluid simulations. J Comput Phys 305:333–359

    Article  MathSciNet  MATH  Google Scholar 

  52. Fu L (2019) A low-dissipation finite-volume method based on a new teno shock-capturing scheme. Comput Phys Commun 235:25–39

    Article  MathSciNet  MATH  Google Scholar 

  53. Liska R, Wendroff B (2003) Comparison of several difference schemes on 1d and 2d test problems for the Euler equations. SIAM J Sci Comput 25(3):995–1017

    Article  MathSciNet  MATH  Google Scholar 

  54. Kuzmin D, Vedral J (2023) Dissipation-based weno stabilization of high-order finite element methods for scalar conservation laws. J Comput Phys 487:112153

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang X, Shu C-W (2010) On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J Comput Phys 229(23):8918–8934

    Article  MathSciNet  MATH  Google Scholar 

  56. Nazarov M, Hoffman J (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int J Numer Methods Fluids 71(3):339–357

    Article  MathSciNet  MATH  Google Scholar 

  57. Torre M, Morganti S, Pasqualini FS, Düster A, Reali A (2023) Immersed isogeometric analysis based on a hybrid collocation/finite cell method. Comput Methods Appl Mech Eng 405:115856

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Aronson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronson, R.M., Evans, J.A. Stabilized isogeometric collocation methods for hyperbolic conservation laws. Engineering with Computers (2023). https://doi.org/10.1007/s00366-023-01918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01918-4

Keywords

Navigation