Skip to main content
Log in

Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we provide a priori error estimates with explicit constants for both the \(L^2\)-projection and the Ritz projection onto spline spaces of arbitrary smoothness defined on arbitrary grids. This extends the results recently obtained for spline spaces of maximal smoothness. The presented error estimates are in agreement with the numerical evidence found in the literature that smoother spline spaces exhibit a better approximation behavior per degree of freedom, even for low smoothness of the functions to be approximated. First we introduce results for univariate spline spaces, and then we address multivariate tensor-product spline spaces and isogeometric spline spaces generated by means of a mapped geometry, both in the single-patch and in the multi-patch case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h{-}p{-}k\)-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beirão da Veiga, L., Cho, D., Sangalli, G.: Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209–212, 1–11 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bressan, A., Sande, E.: Approximation in FEM, DG and IGA: a theoretical comparison. Numer. Math. 143, 923–942 (2019)

    Article  MathSciNet  Google Scholar 

  6. Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company, Dordrecht (1974)

    Book  Google Scholar 

  7. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503–520 (1996)

    Article  Google Scholar 

  8. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  9. Crouzeix, M., Thomée, V.: The stability in \(L_p\) and \(W_p^1\) of the \(L_2\)-projection onto finite element function spaces. Math. Comput. 48, 521–532 (1987)

    MATH  Google Scholar 

  10. Engvall, L., Evans, J.A.: Mesh quality metrics for isogeometric Bernstein–Bézier discretizations. Preprint, arXiv:1810.06975

  11. Evans, J.A., Bazilevs, Y., Babuska, I., Hughes, T.J.R.: \(n\)-Widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)

    Article  MathSciNet  Google Scholar 

  12. Floater, M.S., Sande, E.: Optimal spline spaces of higher degree for \(L^2\) \(n\)-widths. J. Approx. Theory 216, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  13. Floater, M.S., Sande, E.: On periodic \(L^2\) \(n\)-widths. J. Comput. Appl. Math. 349, 403–409 (2019)

    Article  MathSciNet  Google Scholar 

  14. Floater, M.S., Sande, E.: Optimal spline spaces for \(L^2\) \(n\)-width problems with boundary conditions. Constr. Approx. 50, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hofreither, C., Takacs, S.: Robust multigrid for isogeometric analysis based on stable splittings of spline spaces. SIAM J. Numer. Anal. 55, 2004–2024 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hughes, T.J.R., Sangalli, G., Tani, M.: Isogeometric analysis: mathematical and implementational aspects, with applications. In: Lyche, T., Manni, C., Speleers, H. (eds.) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Lecture Notes in Mathematics, vol. 2219, pp. 237–315. Springer, Berlin (2018)

    Chapter  Google Scholar 

  17. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Berlin (1985)

    Google Scholar 

  18. Sande, E., Manni, C., Speleers, H.: Sharp error estimates for spline approximation: explicit constants, \(n\)-widths, and eigenfunction convergence. Math. Models Methods Appl. Sci. 29, 1175–1205 (2019)

    Article  MathSciNet  Google Scholar 

  19. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  20. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1999)

    Google Scholar 

  21. Shadrin, A.Y.: Inequalities of Kolmogorov type and estimates of spline interpolation on periodic classes \(W^m_2\). Math. Notes 48, 1058–1063 (1990)

    Article  MathSciNet  Google Scholar 

  22. Sogn, J., Takacs, S.: Robust multigrid solvers for the biharmonic problem in isogeometric analysis. Comput. Math. Appl. 77, 105–124 (2019)

    Article  MathSciNet  Google Scholar 

  23. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Upper Saddle River (1973)

    MATH  Google Scholar 

  24. Takacs, S.: Robust approximation error estimates and multigrid solvers for isogeometric multi-patch discretizations. Math. Models Methods Appl. Sci. 28, 1899–1928 (2018)

    Article  MathSciNet  Google Scholar 

  25. Takacs, S., Takacs, T.: Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411–1445 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Stefan Takacs (RICAM, Austria) for pointing out Lemma 5. This work was supported by the Beyond Borders Programme of the University of Rome Tor Vergata through the project ASTRID (CUP E84I19002250005) and by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata (CUP E83C18000100006). C. Manni and H. Speleers are members of Gruppo Nazionale per il Calcolo Scientifico, Istituto Nazionale di Alta Matematica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Sande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sande, E., Manni, C. & Speleers, H. Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis. Numer. Math. 144, 889–929 (2020). https://doi.org/10.1007/s00211-019-01097-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01097-9

Mathematics Subject Classification

Navigation