Skip to main content
Log in

Approximation in FEM, DG and IGA: a theoretical comparison

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we compare the approximation properties of degree p spline spaces with different numbers of continuous derivatives. We prove that, for a given space dimension, \(\mathcal {C}^{p-1}\) splines provide better a priori error bounds for the approximation of functions in \(H^{p+1}(0,1)\). Our result holds for all practically interesting cases when comparing \(\mathcal {C}^{p-1}\) splines with \(\mathcal {C}^{-1}\) (discontinuous) splines. When comparing \(\mathcal {C}^{p-1}\) splines with \(\mathcal {C}^{0}\) splines our proof covers almost all cases for \(p\ge 3\), but we can not conclude anything for \(p=2\). The results are generalized to the approximation of functions in \(H^{q+1}(0,1)\) for \(q<p\), to broken Sobolev spaces and to tensor product spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h\)\(p\)\(k\)-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Article  MathSciNet  Google Scholar 

  4. Evans, J.A., Bazilevs, Y., Babuška, I., Hughes, T.J.R.: \(n\)-Widths, sup–infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198(21–26), 1726–1741 (2009)

    Article  MathSciNet  Google Scholar 

  5. Floater, M.S., Sande, E.: Optimal spline spaces of higher degree for \(L^2\) \(n\)-widths. J. Approx. Theory 216, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  6. Floater, M.S., Sande, E.: Optimal spline spaces for \(L^2\) \(n\)-width problems with boundary conditions. Constr. Approx. 50, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  8. Kolmogorov, A.: Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann. Math. 37, 107–110 (1936)

    Article  MathSciNet  Google Scholar 

  9. Melkman, A.A., Micchelli, C.A.: Spline spaces are optimal for \(L^2\) \(n\)-width. Ill. J. Math. 22, 541–564 (1978)

    Article  Google Scholar 

  10. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Berlin (1985)

    MATH  Google Scholar 

  11. Robbins, H.: A remark on stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  12. Takacs, S., Takacs, T.: Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26(7), 1411–1445 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Sande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research leading to these results was carried out while both authors were affiliated with the University of Oslo and received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 339643.

Appendix

Appendix

Lemma 7

Let \(p\ge 1\) be any odd number. Then the interpolation problem: find \(g \in \mathcal {P}^{p}\) such that for all \(s=0,2,\ldots ,p-1\),

$$\begin{aligned} \left\{ \begin{aligned} \partial ^s g(0)&=a_s\\ \partial ^s g(1)&=b_s \end{aligned}\right. \ \end{aligned}$$
(22)

admits a solution for all \(\{a_s\}\), \(\{b_s\}\).

Proof

We proceed by induction on p. If \(p=1\) then the linear interpolant \(g(x)=a_0 + x (b_0-a_0)\) satisfies \(g(0)=a_0\) and \(g(1)=b_0\) and is a solution. Now, let \(p\ge 3\) be any odd number and assume the result is true for \(p-2\). Let \(f\in \mathcal {P}^{p-2}\) be the solution of

$$\begin{aligned} \partial ^s f(0)=a_{s+2},\quad \partial ^s f(1)=b_{s+2}\quad s=0,2,\ldots ,p-3, \end{aligned}$$

which we know exist by the induction hypothesis. We then define the function g by integrating f twice, i.e.,

$$\begin{aligned} g(x)=cx+d+\int _0^x\int _0^yf(z)dzdx. \end{aligned}$$

This function then satisfies the cases \(s\ge 2\) of (22) for all \(c,d\in \mathbb {R}\). We finish the proof by picking the constants c and d such that the case \(s=0\), meaning \(g(0)=a_0\) and \(g(1)=b_0\), is also satisfied. \(\square \)

Lemma 8

Let \(p\ge 0\) be any even number. Then the interpolation problem: find \(g \in \mathcal {P}^{p}\) such that for all \(s=1,3,\ldots ,p-1\),

$$\begin{aligned} \left\{ \begin{aligned} \partial ^s g(0)&=a_k\\ \partial ^s g(1)&=b_k \end{aligned}\right. \ \end{aligned}$$
(23)

admits a solution for all \(\{a_s\}\), \(\{b_s\}\).

Proof

For \(p=0\) there is nothing to prove, and so we consider an even number \(p\ge 2\). We then let \(f\in \mathcal {P}^{p-1}\) be the solution of

$$\begin{aligned} \partial ^s f(0)=a_{s-1},\quad \partial ^s f(1)=b_{s-1}\quad s=0,2,\ldots ,p-2, \end{aligned}$$

which we know exist by Lemma 7. The function \(g(x)=c+\int _0^xf(y)dy\) is then a solution of (23) for any \(c\in \mathbb {R}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressan, A., Sande, E. Approximation in FEM, DG and IGA: a theoretical comparison. Numer. Math. 143, 923–942 (2019). https://doi.org/10.1007/s00211-019-01063-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01063-5

Mathematics Subject Classification

Navigation