Skip to main content
Log in

Numerical simulation of stress-based topological optimization of continuum structures under casting constraints

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper, based on an extended bi-directional evolutionary structural optimization method, proposes a design approach to minimize the maximum von Mises stress of continuum structures subject to both material use and casting constraints. The stress singularity phenomenon is avoided naturally by the technique of discrete variable of the bi-directional evolutionary structural optimization method. The maximum von Mises stress is approximated by the global p-norm stress aggregation approach, and the adjoint method is adopted to derive the sensitivity numbers. Both sensitivity numbers and topological variables are filtered to overcome the highly nonlinear stress behavior and stabilize the optimization procedure. A series of comparison studies have been conducted to validate the effectiveness and practicability of the method on several benchmark design problems. Both two and four parting directions are investigated in this paper. The examples exhibit significant difference in the final topologies for designs with casting constraints. The casting constraints limit the range of solutions to topology optimization problems. Designs with casting constraints seek to satisfy manufacturability of the optimized structure at the expense of structural strength performance. The study demonstrates the importance of strength criteria for the design of continuum structures under casting constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. https://doi.org/10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  2. Liang X, To AC, Du JB, Zhang YJ (2021) Topology optimization of phononic-like structures using experimental material interpolation model for additive manufactured lattice infills. Comput Methods Appl Mech Engrg 377:113717. https://doi.org/10.1016/j.cma.2021.113717

    Article  MathSciNet  MATH  Google Scholar 

  3. Gai YD, Zhu XF, Zhang YJ, Hou WB, Hu P (2020) Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves. Struct Multidiscip Optim 61(3):963–982. https://doi.org/10.1007/s00158-019-02398-1

    Article  MathSciNet  Google Scholar 

  4. Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23(4):595–622. https://doi.org/10.1007/s11831-015-9151-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Li ZH, Shi TL, Xia Q (2017) Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration. Adv Eng Softw 107:59–70. https://doi.org/10.1016/j.advengsoft.2016.12.001

    Article  Google Scholar 

  6. Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4):379–402. https://doi.org/10.1002/nme.2478

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia L, Xia Q, Huang X, Xie YM (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng 25(2):437–478. https://doi.org/10.1007/s11831-016-9203-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478. https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3c1453::AID-NME480%3e3.0.CO;2-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620. https://doi.org/10.1007/s00158-009-0440-y

    Article  Google Scholar 

  10. Svärd H (2015) Interior value extrapolation: a new method for stress evaluation during topology optimization. Struct Multidiscip Optim 51(3):613–629. https://doi.org/10.1007/s00158-014-1171-2

    Article  Google Scholar 

  11. Bruggi M (2016) Topology optimization with mixed finite elements on regular grids. Comput Methods Appl Mech Eng 305:133–153. https://doi.org/10.1016/j.cma.2016.03.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu B, Han YS, Zhao L (2020) Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints. Appl Math Model 80:771–791. https://doi.org/10.1016/j.apm.2019.12.009

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu B, Han YS, Zhao L (2021) Bi-directional evolutionary stress-based topology optimization of material nonlinear structures. Struct Multidiscip Optim 63(3):1287–1305. https://doi.org/10.1007/s00158-020-02757-3

    Article  MathSciNet  Google Scholar 

  14. Cheng G, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13(4):258–266. https://doi.org/10.1007/BF01197454

    Article  Google Scholar 

  15. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36:125–141. https://doi.org/10.1007/s00158-007-0203-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384. https://doi.org/10.1007/s00158-012-0759-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang R, Chen C (1996) Stress-based topology optimization. Struct Multidiscip Optim 12(2):98–105. https://doi.org/10.1007/BF01196941

    Article  Google Scholar 

  18. Xia L, Zhang L, Xia Q, Shi TL (2018) Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Methods Appl Mech Eng 333:356–370. https://doi.org/10.1016/j.cma.2018.01.035

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao F, Xia L, Lai WX, Xia Q, Shi TL (2019) Evolutionary topology optimization of continuum structures with stress constraints. Struct Multidiscip Optim 59:647–658. https://doi.org/10.1007/s00158-018-2090-4

    Article  MathSciNet  Google Scholar 

  20. Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41. https://doi.org/10.1016/j.cma.2012.10.019

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou M, Sigmund O (2017) On fully stressed design and p-norm measures in structural optimization. Struct Multidiscip Optim 56(3):731–736. https://doi.org/10.1007/s00158-017-1731-3

    Article  MathSciNet  Google Scholar 

  22. van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4):425–438. https://doi.org/10.1007/s00158-006-0091-1

    Article  Google Scholar 

  23. Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32:909–918. https://doi.org/10.1016/j.enganabound.2007.05.007

    Article  MATH  Google Scholar 

  24. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472. https://doi.org/10.1007/s00158-013-0912-y

    Article  MathSciNet  Google Scholar 

  25. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896. https://doi.org/10.1016/0045-7949(93)90035-c

    Article  Google Scholar 

  26. Huang X, Xie YM (2007) Convergent and mesh-independent solutions for bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049. https://doi.org/10.1016/j.finel.2007.06.006

    Article  Google Scholar 

  27. Fritzen F, Xia L, Leuschner M, Breitkopf P (2016) Topology optimization of multiscale elastoviscoplastic structures. Inter J Numer Methods Eng 106(6):430–453. https://doi.org/10.1002/nme.5122

    Article  MathSciNet  MATH  Google Scholar 

  28. Xia L, Fritzen F, Breitkopf P (2017) Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim 55(2):569–581. https://doi.org/10.1007/s00158-016-1523-1

    Article  MathSciNet  Google Scholar 

  29. Xia L, Da D, Yvonnet J (2018) Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Comput Methods Appl Mech Engrg 332:234–254. https://doi.org/10.1016/j.cma.2017.12.021

    Article  MathSciNet  MATH  Google Scholar 

  30. Han YS, Xu B, Wang Q, Liu YH (2021) Bi-directional evolutionary topology optimization of continuum structures subjected to inertial loads. Adv Eng Softw 155:102897. https://doi.org/10.1016/j.advengsoft.2020.102897

    Article  Google Scholar 

  31. Xu B, Han YS, Zhao L, Xie YM (2019) Topology optimization of continuum structures for natural frequencies considering casting constraints. Eng Optimiz 51(6):941–960. https://doi.org/10.1080/0305215X.2018.1506771

    Article  MathSciNet  Google Scholar 

  32. Han YS, Xu B, Zhao L, Xie YM (2019) Topology optimization of continuum structures under hybrid additive-subtractive manufacturing constraints. Struct Multidiscip Optim 60(6):2571–2595. https://doi.org/10.1007/s00158-019-02334-3

    Article  Google Scholar 

  33. Xu B, Han YS, Zhao L, Xie YM (2020) Topological optimization of continuum structures for additive manufacturing considering thin feature and support structure constraints. Eng Optimiz. https://doi.org/10.1080/0305215X.2020.1849170

    Article  Google Scholar 

  34. Zuo KT, Chen LP, Zhang YQ, Yang J (2006) Manufacturing-and machining-based topology optimization. Int J Adv Manuf Tech 27(5):531–536. https://doi.org/10.1007/s00170-004-2210-8

    Article  Google Scholar 

  35. Ishii K, Aomra S (2004) Topology optimization for the extruded three dimensional structure with constant cross section. JSME Int J A-Solid M 47(2):198–206. https://doi.org/10.1299/jsmea.47.198

    Article  Google Scholar 

  36. Li H, Li PG, Gao L, Zhang L, Wu T (2015) A level set method for topological shape optimization of 3D structures with extrusion constraints. Comput Method Appl M 283:615–635. https://doi.org/10.1016/j.cma.2014.10.006

    Article  MathSciNet  MATH  Google Scholar 

  37. Sørensen S, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48(2):249–265. https://doi.org/10.1007/s00158-013-0904-y

    Article  MathSciNet  Google Scholar 

  38. Wan F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784. https://doi.org/10.1007/s00158-010-0602-y

    Article  MATH  Google Scholar 

  39. Asberg B, Blanco G, Bose P, Garcia-Lopez J, Overmars M et al (1997) Feasibility of design in stereolithography. Algorithmica 19(1):61–83. https://doi.org/10.1007/PL00014421

    Article  MathSciNet  MATH  Google Scholar 

  40. Bose P, van Kreveld M, Toussaint G (1998) Filling polyhedral molds. Comput Aided Design 30(4):245–254. https://doi.org/10.1016/S0010-4485(97)00075-4

    Article  MATH  Google Scholar 

  41. Harzheim L, Graf G (2006) A review of optimization of cast parts using topology optimization. II-topology optimization with manufacturing constraints. Struct Multidiscip Optim 31(5):388–399. https://doi.org/10.1007/s00158-005-0554-9

    Article  Google Scholar 

  42. Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization. In: IUTAM symposium on machines and materials: status and perspectives. Solid mechanics and its applications, vol 137. Springer, New York, pp 239–248

  43. Hui KC, Tan ST (1992) Mould design with sweep operations-a heuristic search approach. Comput Aided Design 24(2):81–91. https://doi.org/10.1016/0010-4485(92)90002-R

    Article  MATH  Google Scholar 

  44. Kwong KK (1992) Computer-aided parting line and parting surface generation in mould design. Ph.D. thesis, The University of Hong Kong, Hong Kong

  45. Gersborg AR, Andreasen CS (2011) An explicit parameterization for casting constraints in gradient driven topology optimization. Struct Multidiscip Optim 44(6):875–881. https://doi.org/10.1007/s00158-011-0632-0

    Article  Google Scholar 

  46. Zhu JH, Gu XJ, Zhang WH, Beckers P (2013) Structural design of aircraft skin stretch-forming die using topology optimization. J Comput Appl Math 246:278–288. https://doi.org/10.1016/j.cam.2012.09.001

    Article  MathSciNet  MATH  Google Scholar 

  47. Duysinx P, Sigmund O (1998) New development in handling stress constraints in optimal material distribution. In: Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on multidisciplinary analysis and optimization. A collection of technical papers (held in St. Louis, Missouri), vol 3, pp 1501–1509

  48. Han YS, Xu B, Liu YH (2021) An efficient 137-line Matlab code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method. Struct Multidiscip Optim 63(5):2571–2588. https://doi.org/10.1007/s00158-020-02816-9

    Article  MathSciNet  Google Scholar 

  49. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127. https://doi.org/10.1007/s001580050176

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2021014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Han.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Availability of data and materials

The necessary information for replication of the results is present in the manuscript. The interested reader may contact the corresponding author for further implementation details.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wang, Q. Numerical simulation of stress-based topological optimization of continuum structures under casting constraints. Engineering with Computers 38, 4919–4945 (2022). https://doi.org/10.1007/s00366-021-01512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01512-6

Keywords

Navigation