Skip to main content
Log in

An explicit parameterization for casting constraints in gradient driven topology optimization

  • Brief Note
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

From a practical point of view it is often desirable to limit the complexity of a topology optimization design such that casting/milling type manufacturing techniques can be applied. In the context of gradient driven topology optimization this work studies how castable designs can be obtained by use of a Heaviside design parameterization in a specified casting direction. This reduces the number of design variables considerably and the approach is simple to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61:498–513

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 4(1):193–202

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Guest JK (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199:123–135

    Article  MathSciNet  Google Scholar 

  • Harzheim L, Graf G (2006) A review of optimization of cast parts using topology optimization II—topology optimization with manufacturing constraints. Struct Multidisc Optim 31:388–399

    Article  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89:259–279

    Article  Google Scholar 

  • Pedersen CBW, Allinger P (2006) Industrial implementation and applications of topology optimization and future needs. In: IUTAM symposium on topological design optimization of structures, machines and materials: status and perspectives. Solid mechanics and its applications, vol 137. Springer, pp 229–238. ISBN 1-4020-4729-00

  • Pedersen P, Pedersen NL (2009) Analytical optimal designs for long and short statically determinate beam structures. Struct Multidisc Optim 39:343–357

    Article  Google Scholar 

  • Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization. In: IUTAM symposium on machines and materials: status and perspectives. Solid mechanics and its applications, vol 137. Springer, pp 239–248. ISBN 1-4020-4729-0

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):975–1001

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25:227–239

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2010) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim. doi:10.1007/s00158-010-0602-y

  • Xu, S, Cai, Y, Cheng, G (2010) Volume preserving nonlinear density filter based on heaviside functions Struct Multidisc Optim 41:495–505

    Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

  • Zuo K-T, Chen L-P, Zhang Y-Q, Yang J (2006) Manufacturing- and machining-based topology optimization. Int J Adv Manuf Technol 27:531–536

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ole Sigmund and the TopOpt group at DTU for fruitful discussions related to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Roulund Gersborg.

Additional information

Eurohorcs/ESF European Young Investigator Award: “Synthesis and topology optimization of optomechanical systems”. DCAMM Research School via the Danish Agency for Science, Technology and Innovation. Danish Center for Scientific Computing (DCSC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gersborg, A.R., Andreasen, C.S. An explicit parameterization for casting constraints in gradient driven topology optimization. Struct Multidisc Optim 44, 875–881 (2011). https://doi.org/10.1007/s00158-011-0632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0632-0

Keywords

Navigation