Skip to main content
Log in

Evidence for the functioning of a Cl/H+ antiporter in the membranes isolated from root cells of the halophyte Suaeda altissima and enriched with Golgi membranes

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cl/H+ exchange activity in the membranes isolated from the root cells of the halophyte Suaeda altissima (L.) Pall. was originally revealed and characterized. The membrane vesicles were isolated by centrifugation of microsomes in a continuous iodixanol density gradient. The highest activity of latent inosine phosphatase, a marker of Golgi membranes, was localized in the upper part of the gradient, indicating its enrichment with Golgi membranes. The same part of the gradient was characterized by the highest Cl/H+ exchange rate. The Cl/H+ exchange activity was detected as electrogenic ΔpCl-dependent H+ transport monitored as changes in differential absorbance of a ΔpH-probe acridine orange, or as changes in fluorescence excitation spectrum of a pH-probe pyranine loaded into the vesicles. Generation of transmembrane electric potential (Δψ) during the Cl/H+ exchange was assayed as changes in differential absorbance of a Δψ-probe safranin O. Establishing the transmembrane ΔpCl inward vesicles resulted in H+ efflux sensitive to DIDS (4,4′-diisothiocyano-2,2′-stylbene-disulfonic acid), an inhibitor of chloride transporters and channels, and generation of Δψ negative inside. To maintain the ΔpCl-dependent H+ efflux from the vesicles, either the presence of a penetrating cation tetraphenylphosphonium neutralizing negative charges inside the vesicles or null K+ diffusion potential across the membranes was required. The results demonstrate the activity of an electrogenic Cl/H+ antiporter in the fraction enriched with Golgi membranes. We hypothesize that the Cl/H+ antiporter is involved into the regulation of cytoplasmic Cl concentrations by vesicular trafficking of Cl from the cytoplasm to the vacuole by endosomes, derivatives of Golgi membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AO:

acridine orange (N,N,N′,N′-tetramethylacridine-3,6-diamine)

β-ME:

β-mercaptoethanol

DIDS:

4,4′-diisothiocyano-2,2′-stylbene-disulfonic acid

ER:

endoplasmic reticulum

mon:

monensin

GEF:

Golgi-enriched fraction

IDP:

inosine diphosphatase

NPPB:

5-nitro-2-(3-phenylpropylamine)benzoic acid

PM:

plasma membrane

PMSF:

phenylmethylsulfonyl fluoride

PVP:

40-polyvinylpyrrolidone with the average mol wt of 40000

TPP+ :

tetraphenylphosphonium

References

  1. Jentsch, T.J., Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters, J. Physiol., 2007, vol. 578, pp. 633–640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Barbier-Brygoo, Í., de Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., and Wege, S., Anion channels/transporters in plants: from molecular bases to regulatory networks, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 25–51.

    Article  CAS  PubMed  Google Scholar 

  3. Marmagne, A., Vinauger-Douard, M., Monachello, D., de Longevialle, A.F., Charon, C., Allot, M., Rappaport, F., Wollman, F.A., Barbier-Brygoo, H., and Ephritikhine, G., Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively, J. Exp. Bot., 2007, vol. 58, pp. 3385–3393.

    Article  CAS  PubMed  Google Scholar 

  4. Accardi, A. and Miller, C., Secondary active transport mediated by a prokaryotic homologue of CLC Cl channels, Nature, 2004, vol. 427, pp. 803–807.

    Article  CAS  PubMed  Google Scholar 

  5. De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J.M., Thomine, S., Gambale, F., and Barbier-Brygoo, H., The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles, Nature, 2006, vol. 442, pp. 939–942.

    Article  PubMed  Google Scholar 

  6. Hehenberger, M., Schwappach, B., Fischer, W.N., Frommer, W.B., Jentsch, T.J., and Steinmeyer, K., A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption, J. Biol. Chem., 1996, vol. 271, pp. 33632–33638.

    Article  Google Scholar 

  7. Lv, Q.D., Tang, R.J., Liu, H., Gao, X.S., Li, Y.Z., Zheng, H.Q., and Zhang, H.X., Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family, Plant Sci., 2009, vol. 176, pp. 650–661.

    Article  CAS  Google Scholar 

  8. Von der Fecht-Bartenbach, J.V.D., Bogner, M., Krebs, M., Stierhof, Y.D., Schumacher, K., and Ludewig, U., Function of the anion transporter AtCLC-d in the trans-Golgi network, Plant J., 2007, vol. 50, pp. 466–474.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Roberts, S.K., Plasma membrane anion channels in higher plants and their putative functions in roots, New Phytol., 2006, vol. 169, pp. 647–666.

    Article  PubMed  Google Scholar 

  10. Tavares, B., Domingos, P., Dias, P., Feijo, J.A., and Bicho, A., The essential role of anionic transport in plant cells: the pollen tube as a case study, J. Exp. Bot., 2011, vol. 62, pp. 2273–2298.

    Article  CAS  PubMed  Google Scholar 

  11. Von der Fecht-Bartenbach, J.V.D., Bogner, M., Dynowsky, M., and Ludewig, U., CLC-b-mediated N 3 /H+ exchange across the tonoplast of Arabidopsis vacuoles, Plant Cell Physiol., 2010, vol. 51, pp. 960–968.

    Article  PubMed  Google Scholar 

  12. Jossier, M., Kroniewitcz, L., Dalmas, F., le Thiec, D., Ephritikhine, G., Thomine, S., Barbier-Brygoo, H., Vavasseur, A., Filleur, S., and Leonhardt, N., The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance, Plant J., 2010, vol. 64, pp. 563–576.

    Article  CAS  PubMed  Google Scholar 

  13. Wong, T.H., Li, M.W., Yao, X.Q., and Lam, H.M., The GmCLC1 protein from soybean functions as a chloride ion transporter, J. Plant Physiol., 2013, vol. 170, pp. 101–104.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson, S.P. and Downton, W.J.S., Potassium, sodium and chloride ion concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australis R. Br., Aust. J. Plant Physiol., 1985, vol. 12, pp. 471–479.

    Article  CAS  Google Scholar 

  15. Palmgren, M.G., Acridine orange as a probe for measuring pH gradients across membranes, mechanism and limitations, Analyt. Biochem., 1991, vol. 192, pp. 316–321.

    Article  CAS  PubMed  Google Scholar 

  16. Clement, N.R. and Gould, J.M., Pyranine (8-hydroxy1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry, 1981, vol. 20, pp. 1534–1538.

    Article  CAS  PubMed  Google Scholar 

  17. Akerman, K.E. and Wikstrom, M.K., Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 1976, vol. 68, pp. 191–197.

    Article  CAS  PubMed  Google Scholar 

  18. Bashford, C.L., Chance, B., and Prince, R.C., Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria, Biochim. Biophys. Acta, 1979, vol. 545, pp. 46–57.

    Article  CAS  PubMed  Google Scholar 

  19. Hodges, T.K. and Leonard, R.T., Purification of a plasma membrane-bound adenosine triphosphatase from plant roots, Methods Enzymol., 1974, vol. 32B, pp. 392–406.

    Article  Google Scholar 

  20. Simpson, I.A. and Sonne, O., A simple, rapid and sensitive method for measuring protein concentration in subcellular membrane fractions prepared by sucrose density ultracentrifugation, Anal. Biochem., 1982, vol. 119, pp. 424–427.

    Article  CAS  PubMed  Google Scholar 

  21. Saheki, S., Takeda, A., and Shimazu, T., Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity, Anal. Biochem., 1985, vol. 148, pp. 277–281.

    Article  CAS  PubMed  Google Scholar 

  22. Matulef, K. and Maduke, M., Side-dependent inhibition of a prokaryotic CLC by DIDS, Biophys. J., 2005, vol. 89, pp. 1721–1730.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Howery, A.E., Elvington, S., Abraham, S.J., Choi, K.H., Dworschak-Simpson, S., Phillips, S., Ryan, C.M., Sanford, R.L., Almqvist, J., Tran, K., Chew, T.A., Zachariae, U., Andersen, O.S., Whitelegge, J., Matulef, K., Bois, J.D., and Maduke, M.C., A designed inhibitor of a CLC antiporter blocks function through a unique binding mode, Chem. Biol., 2012, vol. 19, pp. 1460–1470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jentsch, T.J., Stein, V., Weinreich, F., and Zdebik, A.A., Molecular structure and physiological function of chloride channels, Physiol. Rev., 2002, vol. 82, pp. 503–568.

    CAS  PubMed  Google Scholar 

  25. Hafke, J.B., Hafke, Y., Smith, J.A.C., Lüttge, U., and Thiell, G., Vacuolar malate uptake is mediated by an anion-selective inward rectifier, Plant J., 2003, vol. 35, pp. 116–128.

    Article  CAS  PubMed  Google Scholar 

  26. Antonenko, Y.N. and Bulychev, A.A., Measurements of local pH changes near bilayer lipid membrane by means of pH microelectrode and a protonophore dependent membrane potential. Comparison of the methods, Biochim. Biophys. Acta, 1991, vol. 1070, pp. 279–282.

    Article  CAS  Google Scholar 

  27. Teakle, N. and Tyerman, S.D., Mechanisms of Cltransport contributing to salt tolerance, Plant Cell Environ., 2010, vol. 33, pp. 566–589.

    Article  CAS  PubMed  Google Scholar 

  28. Hajibagheri, M.A. and Flowers, T.J., X-ray microanalyses of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum., Planta, 1989, vol. 177, pp. 131–134.

    Article  CAS  PubMed  Google Scholar 

  29. Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., Goh, T., Sato, M.H., Morita, M.T., and Tasaka, M., Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis, Plant Cell Physiol., 2009, vol. 50, pp. 2023–2033.

    Article  CAS  PubMed  Google Scholar 

  30. Bassil, E., Ohto, M.A., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T., and Blumwald, E., The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development, Plant Cell, 2011, vol. 23, pp. 224–239.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Balnokin, Yu.V., Kurkova, E.B., Khalilova, L.A., Myasoedov, N.A., and Yusufov, A.G., Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport, Russ. J. Plant Physiol., 2007, vol. 54, pp. 797–805.

    Article  CAS  Google Scholar 

  32. Martinoia, E., Meyer, S., de Angeli, A., and Nagy, R., Vacuolar transporters in their physiological context, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 183–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Balnokin.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, A.V., Orlova, J.V., Khalilova, L.A. et al. Evidence for the functioning of a Cl/H+ antiporter in the membranes isolated from root cells of the halophyte Suaeda altissima and enriched with Golgi membranes. Russ J Plant Physiol 62, 45–56 (2015). https://doi.org/10.1134/S1021443715010124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715010124

Keywords

Navigation