Skip to main content
Log in

Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics

  • Special Issue Honoring 80th Anniversary of Academician V. P. Skulachev Guest Editors D. B. Zorov and B. V. Chernyak
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KREEP:

Potassium [K], Rare Earth Elements and Phosphorus

LUCA:

Last Universal Cellular Ancestor

P-loop:

phosphate-binding loop — amino acid sequence (in nucleotide-binding proteins) also known as a Walker A-motif

Δψ:

transmembrane potential

References

  1. Skulachev, V. P. (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient, FEBS Lett., 87, 171–179.

    CAS  PubMed  Google Scholar 

  2. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature, 191, 144–148.

    CAS  PubMed  Google Scholar 

  3. Skulachev, V. P. (1977) Transmembrane electrochemical H+-potential as a convertible energy source for the living cell, FEBS Lett., 74, 1–9.

    CAS  PubMed  Google Scholar 

  4. Brown, I. I., Galperin, M. Y., Glagolev, A. N., and Skulachev, V. P. (1983) Utilization of energy stored in the form of Na+ and K+ ion gradients by bacterial cells, Eur. J. Biochem., 134, 345–349.

    CAS  PubMed  Google Scholar 

  5. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483–485.

    CAS  Google Scholar 

  6. Skulachev, V. P. (1989) The sodium cycle: a novel type of bacterial energetics, J. Bioenerg. Biomembr., 21, 635–647.

    CAS  PubMed  Google Scholar 

  7. Cramer, W. A., and Knaff, D. B. (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics, Springer-Verlag.

    Google Scholar 

  8. Dimroth, P. (1994) Bacterial sodium ion-coupled energetics, Antonie Van Leeuwenhoek, 65, 381–395.

    CAS  PubMed  Google Scholar 

  9. Hase, C. C., Fedorova, N. D., Galperin, M. Y., and Dibrov, P. A. (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons, Microbiol. Mol. Biol. Rev., 65, 353–370.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, Biol. Direct., 3, 13.

    PubMed Central  PubMed  Google Scholar 

  11. Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985–992.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Mulkidjanian, A. Y., Galperin, M. Y., and Koonin, E. V. (2009) Co-evolution of primordial membranes and membrane proteins, Trends Biochem. Sci., 34, 206–215.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Deamer, D. W. (1987) Proton permeation of lipid bilayers, J. Bioenerg. Biomembr., 19, 457–479.

    CAS  PubMed  Google Scholar 

  14. Van de Vossenberg, J. L., Ubbink-Kok, T., Elferink, M. G., Driessen, A. J., and Konings, W. N. (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea, Mol. Microbiol., 18, 925–932.

    PubMed  Google Scholar 

  15. Skulachev, V. P. (1989) Membrane Bioenergetics, Springer Verlag, Heidelberg.

    Google Scholar 

  16. Konings, W. N. (2006) Microbial transport: adaptations to natural environments, Antonie Van Leeuwenhoek, 90, 325–342.

    CAS  PubMed  Google Scholar 

  17. Macallum, A. B. (1926) The paleochemistry of the body fluids and tissues, Physiol. Rev., 6, 316–357.

    Google Scholar 

  18. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl. Acad. Sci. USA, 109, E821–830.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Williams, R. J. P., and Frausto da Silva, J. J. R. (1991) The Biological Chemistry of the Elements, Clarendon Press, Oxford.

    Google Scholar 

  20. Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F., and Mann, N. H. (2010) Elemental composition of single cells of various strains of marine prochlorococcus and synechococcus using X-ray microanalysis, Limnol. Oceanogr., 48, 1732–1743.

    Google Scholar 

  21. Ventosa, A., Nieto, J. J., and Oren, A. (1998) Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev., 62, 504–544.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Fagerbakke, K. M., Norland, S., and Heldal, M. (1999) The inorganic ion content of native aquatic bacteria, Can. J. Microbiol., 45, 304–311.

    CAS  PubMed  Google Scholar 

  23. Battistuzzi, F. U., Feijao, A., and Hedges, S. B. (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land, BMC Evol. Biol., 4, 44.

    PubMed Central  PubMed  Google Scholar 

  24. Fasano, O., De Vendittis, E., and Parmeggiani, A. (1982) Hydrolysis of GTP by elongation factor Tu can be induced by monovalent cations in the absence of other effectors, J. Biol. Chem., 257, 3145–3150.

    CAS  PubMed  Google Scholar 

  25. Wu, Y., Qian, X., He, Y., Moya, I. A., and Luo, Y. (2005) Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence, J. Biol. Chem., 280, 722–728.

    CAS  PubMed  Google Scholar 

  26. Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O’Keefe, D. P., and Lorimer, G. H. (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent, Biochemistry, 29, 5665–5671.

    CAS  PubMed  Google Scholar 

  27. Toraya, T., and Fukui, S. (1977) Immunochemical evidence for the difference between coenzyme-B12-dependent diol dehydratase and glycerol dehydratase, Eur. J. Biochem., 76, 285–289.

    CAS  PubMed  Google Scholar 

  28. Laughlin, L. T., and Reed, G. H. (1997) The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117, Arch. Biochem. Biophys., 348, 262–267.

    CAS  PubMed  Google Scholar 

  29. McQueney, M. S., and Markham, G. D. (1995) Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition, J. Biol. Chem., 270, 18277–18284.

    CAS  PubMed  Google Scholar 

  30. Toney, M. D., Hohenester, E., Keller, J. W., and Jansonius, J. N. (1995) Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase, J. Mol. Biol., 245, 151–179.

    CAS  PubMed  Google Scholar 

  31. Belogurov, G. A., and Lahti, R. (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans, J. Biol. Chem., 277, 49651–49654.

    CAS  PubMed  Google Scholar 

  32. McCaman, R. E., and Finnerty, W. R. (1968) Biosynthesis of cytidine diphosphate-diglyceride by a particulate fraction from Micrococcus cerificans, J. Biol. Chem., 243, 5074–5080.

    CAS  PubMed  Google Scholar 

  33. Spirin, A. S., and Gavrilova, L. P. (1969) The Ribosome, Springer, New York.

    Google Scholar 

  34. Miskin, R., Zamir, A., and Elson, D. (1970) Inactivation and reactivation of ribosomal subunits: the peptidyl transferase activity of the 50 S subunit of Escherihia coli, J. Mol. Biol., 54, 355–378.

    CAS  PubMed  Google Scholar 

  35. Sigel, R. K. O., and Pyle, A. M. (2007) Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry, Chem. Rev., 107, 97–113.

    CAS  PubMed  Google Scholar 

  36. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 — resolution, Science, 289, 905–920.

    CAS  PubMed  Google Scholar 

  37. Klein, D. J., Moore, P. B., and Steitz, T. A. (2004) The contribution of metal ions to the structural stability of the large ribosomal subunit, RNA, 10, 1366–1379.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Bokov, K., and Steinberg, S. V. (2009) A hierarchical model for evolution of 23S ribosomal RNA, Nature, 457, 977–980.

    CAS  PubMed  Google Scholar 

  39. Davidovich, C., Belousoff, M., Bashan, A., and Yonath, A. (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery, Res. Microbiol., 160, 487–492.

    CAS  PubMed  Google Scholar 

  40. Fox, G. E., Tran, Q., and Yonath, A. (2012) An exit cavity was crucial to the polymerase activity of the early ribosome, Astrobiology, 12, 57–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Koonin, E. V. (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor, Nat. Rev. Microbiol., 1, 127–136.

    CAS  PubMed  Google Scholar 

  42. Koonin, E. V. (2000) How many genes can make a cell: the minimal-gene-set concept, Annu. Rev. Genom. Hum. Genet., 1, 99–116.

    CAS  Google Scholar 

  43. Charlebois, R. L., and Doolittle, W. F. (2004) Computing prokaryotic gene ubiquity: rescuing the core from extinction, Genome Res., 14, 2469–2477.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Mushegian, A. (2005) Protein content of minimal and ancestral ribosome, RNA, 11, 1400–1406.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Mulkidjanian, A. Y., and Galperin, M. Y. (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth, Biol. Direct., 4, 27.

    PubMed Central  PubMed  Google Scholar 

  46. Mulkidjanian, A. Y., and Galperin, M. Y. (2010) On the abundance of zinc in the evolutionarily old protein domains, Proc. Natl. Acad. Sci. USA, 107, E137.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Anand, B., Surana, P., and Prakash, B. (2010) Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH, PLoS One, 5, e9944.

    PubMed Central  PubMed  Google Scholar 

  48. Scrima, A., and Wittinghofer, A. (2006) Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element, EMBO J., 25, 2940–2951.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Yamanaka, K., Hwang, J., and Inouye, M. (2000) Characterization of GTPase activity of TrmE, a member of a novel GTPase superfamily, from Thermotoga maritima, J. Bacteriol., 182, 7078–7082.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Ash, M. R., Guilfoyle, A., Clarke, R. J., Guss, J. M., Maher, M. J., and Jormakka, M. (2010) Potassium-activated GTPase reaction in the G protein-coupled ferrous iron transporter B, J. Biol. Chem., 285, 14594–14602.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Foucher, A. E., Reiser, J. B., Ebel, C., Housset, D., and Jault, J. M. (2012) Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA, PLoS One, 7, e46795.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Leipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002) Classification and evolution of P-loop GTPases and related ATPases, J. Mol. Biol., 317, 41–72.

    CAS  PubMed  Google Scholar 

  53. Kint, C., Verstraeten, N., Hofkens, J., Fauvart, M., and Michiels, J. (2014) Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis, Crit. Rev. Microbiol., 40, 207–224.

    CAS  PubMed  Google Scholar 

  54. Leipe, D. D., Koonin, E. V., and Aravind, L. (2003) Evolution and classification of P-loop kinases and related proteins, J. Mol. Biol., 333, 781–815.

    CAS  PubMed  Google Scholar 

  55. Li, Y., He, Y., and Luo, Y. (2009) Conservation of a conformational switch in RadA recombinase from Methanococcus maripaludis, Acta Crystallogr. D Biol. Crystallogr., 65, 602–610.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Chen, Z., Yang, H., and Pavletich, N. P. (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures, Nature, 453, 489–484.

    CAS  PubMed  Google Scholar 

  57. Haldenby, S., White, M. F., and Allers, T. (2009) RecA family proteins in archaea: RadA and its cousins, Biochem. Soc. Trans., 37, 102–107.

    CAS  PubMed  Google Scholar 

  58. Sandler, S. J., Hugenholtz, P., Schleper, C., DeLong, E. F., Pace, N. R., and Clark, A. J. (1999) Diversity of radA genes from cultured and uncultured archaea: comparative analysis of putative RadA proteins and their use as a phylogenetic marker, J. Bacteriol., 181, 907–915.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Lin, Z., Kong, H., Nei, M., and Ma, H. (2006) Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer, Proc. Natl. Acad. Sci. USA, 103, 10328–10333.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Dibrova, D. V. (2013) Phylogenomic Analysis of Energy Converting Enzymes, Osnabrueck University.

    Google Scholar 

  61. Lowenstein, J. M. (1960) The stimulation of transphosphorylation by alkali-metal ions, Biochem. J., 75, 269–274.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Kusmierczyk, A. R., and Martin, J. (2003) Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn, FEBS Lett., 547, 201–204.

    CAS  PubMed  Google Scholar 

  63. Ash, M. R., Maher, M. J., Mitchell Guss, J., and Jormakka, M. (2012) The cation-dependent G-proteins: in a class of their own, FEBS Lett., 586, 2218–2224.

    CAS  PubMed  Google Scholar 

  64. Harold, F. M., and Altendorf, K. (1974) in Current Topics in Membranes and Transport (Bronner, F., and Kleinzeller, A., eds.) Academic Press, New York, pp. 1–51.

  65. Corratge-Faillie, C., Jabnoune, M., Zimmermann, S., Very, A. A., Fizames, C., and Sentenac, H. (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family, Cell Mol. Life Sci., 67, 2511–2532.

    CAS  PubMed  Google Scholar 

  66. Haupt, M., Bramkamp, M., Coles, M., Kessler, H., and Altendorf, K. (2005) Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB, J. Mol. Microbiol. Biotechnol., 10, 120–131.

    CAS  PubMed  Google Scholar 

  67. Deamer, D. W. (1997) The first living systems: a bioenergetic perspective, Microbiol. Mol. Biol. Rev., 61, 239–261.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Deamer, D. W. (2008) Origins of life: how leaky were primitive cells? Nature, 454, 37–38.

    CAS  PubMed  Google Scholar 

  69. Paula, S., Volkov, A. G., Van Hoek, A. N., Haines, T. H., and Deamer, D. W. (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness, Biophys. J., 70, 339–348.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Boucher, Y., Kamekura, M., and Doolittle, W. F. (2004) Origins and evolution of isoprenoid lipid biosynthesis in archaea, Mol. Microbiol., 52, 515–527.

    CAS  PubMed  Google Scholar 

  71. Pereto, J., Lopez-Garcia, P., and Moreira, D. (2004) Ancestral lipid biosynthesis and early membrane evolution, Trends Biochem. Sci., 29, 469–477.

    CAS  PubMed  Google Scholar 

  72. Koonin, E. V., and Martin, W. (2005) On the origin of genomes and cells within inorganic compartments, Trends Genet., 21, 647–654.

    CAS  PubMed  Google Scholar 

  73. Koga, Y., and Morii, H. (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations, Microbiol. Mol. Biol. Rev., 71, 97–120.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2014) Phylogenomic reconstruction of archaeal fatty acid metabolism, Environ. Microbiol., 16, 907–918.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Smit, A., and Mushegian, A. (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway, Genome Res., 10, 1468–1484.

    CAS  PubMed  Google Scholar 

  76. Ourisson, G., and Nakatani, Y. (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol, Chem. Biol., 1, 11–23.

    CAS  PubMed  Google Scholar 

  77. Gotoh, M., Sugawara, A., Akiyoshi, K., Matsumoto, I., Ourisson, G., and Nakatani, Y. (2007) Possible molecular evolution of biomembranes: from single-chain to doublechain lipids, Chem. Biodivers., 4, 837–848.

    CAS  PubMed  Google Scholar 

  78. Nakatani, Y., Ribeiro, N., Streiff, S., Desaubry, L., and Ourisson, G. (2012) Search for the most primitive membranes: some remaining problems, Orig. Life Evol. Biosph., 42, 497–501.

    PubMed  Google Scholar 

  79. Dibrova, D. V., Chudetsky, M. Y., Galperin, M. Y., Koonin, E. V., and Mulkidjanian, A. Y. (2012) The role of energy in the emergence of biology from chemistry, Orig. Life Evol. Biosph., 42, 459–468.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Mulkidjanian, A. Y., and Galperin, M. Y. (2010) in Structural Bioinformatics of Membrane Proteins (Frishman, D., ed.) Springer, Viena, pp. 1–28.

  81. Chen, I. A., and Szostak, J. W. (2004) Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles, Proc. Natl. Acad. Sci. USA, 101, 7965–7970.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Mansy, S. S. (2010) Membrane transport in primitive cells, Cold Spring Harb. Perspect. Biol., 2, a002188.

    PubMed Central  PubMed  Google Scholar 

  83. Szostak, J. W., Bartel, D. P., and Luisi, P. L. (2001) Synthesizing life, Nature, 409, 387–390.

    CAS  PubMed  Google Scholar 

  84. Mansy, S. S., Schrum, J. P., Krishnamurthy, M., Tobe, S., Treco, D. A., and Szostak, J. W. (2008) Template-directed synthesis of a genetic polymer in a model protocell, Nature, 454, 122–125.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Open questions on the origin of life at anoxic geothermal fields, Orig. Life Evol. Biosph., 42, 507–516.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Pinti, D. L. (2005) in Lectures in Astrobiology (Gargaud, M., Barbier, B., Martin, H., and Reisse, J., eds.) Springer-Verlag, Berlin, pp. 83–111.

  87. Foriel, J., Philippot, P., Rey, P., Somogyi, A., Banks, D., and Menez, B. (2004) Biological control of Cl/Br and low sulfate concentration in a 3.5-Gyr-old seawater from North Pole, Western Australia, Earth Planet. Sci. Lett., 228, 451–463.

    CAS  Google Scholar 

  88. Aver’ev, V. V. (1961) Proc. Volcanol. Lab. Rus. Acad. Sci. (Moscow), Issue 19, pp. 90–98.

    Google Scholar 

  89. White, D. E., Muffler, L. J. P., and Truesdell, A. N. (1971) Vapor-dominated hydrothermal systems compared with hot-water systems, Econ. Geol., 66, 75–97.

    CAS  Google Scholar 

  90. Fournier, R. O. (2004) Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System, US Geological Survey, Menlo Park, California.

    Google Scholar 

  91. Bortnikova, S. B., Gavrilenko, G. M., Bessonova, E. P., and Lapukhov, A. S. (2009) The hydrogeochemistry of thermal springs on Mutnovskii Volcano, southern Kamchatka, J. Volcanol. Seismol., 3, 388–404.

    Google Scholar 

  92. Bychkov, A. Y. (2009) Geochemical Model of Present-Day Ore Formation in the Uzon Caldera [in Russian], GEOS, Moscow.

    Google Scholar 

  93. Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T., and Santosh, M. (2013) The naked planet Earth: most essential pre-requisite for the origin and evolution of life, Geosci. Front., 4, 141–165.

    CAS  Google Scholar 

  94. Galimov, E. M., Natochin, Yu. V., Ryzhenko, B. N., and Cherkasova, E. V. (2012) Chemical composition of the primary aqueous phase of the Earth and origin of life, Geochem. Int., 50, 1048–1068.

    CAS  Google Scholar 

  95. Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S. J., and Albarede, F. (2012) Hf isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust, Earth Planet. Sci. Lett., 337/338, 211–223.

    Google Scholar 

  96. Warren, P. H., and Wasson, J. T. (1979) The origin of KREEP, Rev. Geophys. Space Phys., 17, 73–88.

    CAS  Google Scholar 

  97. Benner, S. A., Kim, H. J., and Carrigan, M. A. (2012) Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA, Acc. Chem. Res., 45, 2025–2034.

    CAS  PubMed  Google Scholar 

  98. Natochin, Y. V. (2007) The physiological evolution of animals: sodium is the clue to resolving contradictions, Herald Russ. Acad Sci., 77, 581–591.

    Google Scholar 

  99. Dimroth, P. (1980) A new sodium-transport system energized by the decarboxylation of oxaloacetate, FEBS Lett., 122, 234–236.

    CAS  PubMed  Google Scholar 

  100. Tokuda, H., and Unemoto, T. (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus, J. Biol. Chem., 257, 10007–10014.

    CAS  PubMed  Google Scholar 

  101. Becher, B., Muller, V., and Gottschalk, G. (1992) N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Go1 is an Na+-translocating membrane protein, J. Bacteriol., 174, 7656–7660.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Roberts, P. G., and Hirst, J. (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter, J. Biol. Chem., 287, 34743–34751.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Mayer, F., and Muller, V. (2014) Adaptations of anaerobic archaea to life under extreme energy limitation, FEMS Microbiol. Rev., 38, 449–472.

    CAS  PubMed  Google Scholar 

  104. Gorecki, K., Hagerhall, C., and Drakenberg, T. (2014) The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance, Anal. Biochem., 445, 80–86.

    CAS  PubMed  Google Scholar 

  105. Moparthi, V. K., Kumar, B., Al-Eryani, Y., Sperling, E., Gorecki, K., Drakenberg, T., and Hagerhall, C. (2014) Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I, Biochim. Biophys. Acta, 1837, 178–185.

    CAS  PubMed  Google Scholar 

  106. Lim, J. K., Mayer, F., Kang, S. G., and Muller, V. (2014) Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon, Proc. Natl. Acad. Sci. USA, 111, 11497–11502.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Luoto, H. H., Belogurov, G. A., Baykov, A. A., Lahti, R., and Malinen, A. M. (2011) Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases, J. Biol. Chem., 286, 21633–21642.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Baykov, A. A., Malinen, A. M., Luoto, H. H., and Lahti, R. (2013) Pyrophosphate-fueled Na+ and H+ transport in prokaryotes, Microbiol. Mol. Biol. Rev., 77, 267–276.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Weber, J., and Senior, A. E. (2003) ATP synthesis driven by proton transport in F1F0-ATP synthase, FEBS Lett., 545, 61–70.

    CAS  PubMed  Google Scholar 

  110. Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases, Nat. Rev. Microbiol., 5, 892–899.

    CAS  PubMed  Google Scholar 

  111. Boyer, P. D. (1997) The ATP synthase — a splendid molecular machine, Annu. Rev. Biochem., 66, 717–749.

    CAS  PubMed  Google Scholar 

  112. Pogoryelov, D., Krah, A., Langer, J. D., Yildiz, O., Faraldo-Gomez, J. D., and Meier, T. (2010) Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases, Nat. Chem. Biol., 6, 891–899.

    CAS  PubMed  Google Scholar 

  113. Nakanishi-Matsui, M., Sekiya, M., and Futai, M. (2013) Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics, IUBMB Life, 65, 247–254.

    CAS  PubMed  Google Scholar 

  114. Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, Biochem. Soc. Trans., 41, 1–16.

    CAS  PubMed  Google Scholar 

  115. Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase, Bioinformatics, 26, 1473–1476.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Muller, V., and Gruber, G. (2003) ATP synthases: structure, function and evolution of unique energy converters, Cell Mol. Life Sci., 60, 474–494.

    CAS  PubMed  Google Scholar 

  117. Meier, T., Krah, A., Bond, P. J., Pogoryelov, D., Diederichs, K., and Faraldo-Gomez, J. D. (2009) Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases, J. Mol. Biol., 391, 498–507.

    CAS  PubMed  Google Scholar 

  118. Martin, W., and Russell, M. J. (2007) On the origin of biochemistry at an alkaline hydrothermal vent, Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, 1887–1925.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Sojo, V., Pomiankowski, A., and Lane, N. (2014) A bioenergetic basis for membrane divergence in archaea and bacteria, PLoS Biol., 12, e1001926.

    PubMed Central  PubMed  Google Scholar 

  120. Krishnamoorthy, G., and Hinkle, P. C. (1984) Non-ohmic proton conductance of mitochondria and liposomes, Biochemistry, 23, 1640–1645.

    CAS  PubMed  Google Scholar 

  121. Blicher, A., Wodzinska, K., Fidorra, M., Winterhalter, M., and Heimburg, T. (2009) The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics, Biophys. J., 96, 4581–4591.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078.

    CAS  PubMed  Google Scholar 

  123. Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Proton conductors in the respiratory chain and artificial membranes, Nature, 216, 718–719.

    CAS  PubMed  Google Scholar 

  124. Lardy, H. A., and Pressman, B. C. (1956) Effect of surface active agents on the latent ATPase of mitochondria, Biochim. Biophys. Acta, 21, 458–466.

    CAS  PubMed  Google Scholar 

  125. Korshunov, S. S., Korkina, O. V., Ruuge, E. K., Skulachev, V. P., and Starkov, A. A. (1998) Fatty acids as natural uncouplers preventing generation of O2 — and H2O2 by mitochondria in the resting state, FEBS Lett., 435, 215–218.

    CAS  PubMed  Google Scholar 

  126. Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation, FEBS Lett., 294, 158–162.

    CAS  PubMed  Google Scholar 

  127. Mills, J. K., and Needham, D. (2005) Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition, Biochim. Biophys. Acta, 1716, 77–96.

    CAS  PubMed  Google Scholar 

  128. Soontharapirakkul, K., and Incharoensakdi, A. (2010) Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism, BMC Biochem., 11, 30.

    PubMed Central  PubMed  Google Scholar 

  129. Soontharapirakkul, K., Promden, W., Yamada, N., Kageyama, H., Incharoensakdi, A., Iwamoto-Kihara, A., and Takabe, T. (2011) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance, J. Biol. Chem., 286, 10169–10176.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Boiteau, L., and Pascal, R. (2011) Energy sources, self-organization, and the origin of life, Orig. Life Evol. Biosph., 41, 23–33.

    CAS  PubMed  Google Scholar 

  131. Glagolev, A. N., and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria, Nature, 272, 280–282.

    CAS  PubMed  Google Scholar 

  132. Vik, S. B., and Antonio, B. J. (1994) A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit, J. Biol. Chem., 269, 30364–30369.

    CAS  PubMed  Google Scholar 

  133. Engelbrecht, S., and Junge, W. (1997) ATP synthase: a tentative structural model, FEBS Lett., 414, 485–491.

    CAS  PubMed  Google Scholar 

  134. Cherepanov, D. A., Mulkidjanian, A. Y., and Junge, W. (1999) Transient accumulation of elastic energy in proton translocating ATP synthase, FEBS Lett., 449, 1–6.

    CAS  PubMed  Google Scholar 

  135. Otto, R., Sonnenberg, A. S., Veldkamp, H., and Konings, W. N. (1980) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux, Proc. Natl. Acad. Sci. USA, 77, 5502–5506.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Michel, T. A., and Macy, J. M. (1990) Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium, J. Bacteriol., 172, 1430–1435.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Lane, N., Allen, J. F., and Martin, W. (2010) How did LUCA make a living? Chemiosmosis in the origin of life, Bioessays, 32, 271–280.

    CAS  PubMed  Google Scholar 

  138. Harold, F. M., and Van Brunt, J. (1977) Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth, Science, 197, 372–373.

    CAS  PubMed  Google Scholar 

  139. Silver, I. A., and Erecinska, M. (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes, Glia, 21, 35–45.

    CAS  PubMed  Google Scholar 

  140. Khan, S., Dapice, M., and Humayun, I. (1990) Energy transduction in the bacterial flagellar motor. Effects of load and pH, Biophys. J., 57, 779–796.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Skulachev, V. P. (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient, FEBS Lett., 87, 171–179.

    CAS  PubMed  Google Scholar 

  142. Bortner, C. D., and Cidlowski, J. A. (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis, Arch. Biochem. Biophys., 462, 176–188.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 397, 7–10.

    CAS  PubMed  Google Scholar 

  144. Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen, T. L., Petersen, J., Andersen, J. P., Vilsen, B., and Nissen, P. (2007) Crystal structure of the sodiumpotassium pump, Nature, 450, 1043–1049.

    CAS  PubMed  Google Scholar 

  145. Aravind, L., Galperin, M. Y., and Koonin, E. V. (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold, Trends Biochem. Sci., 23, 127–129.

    CAS  PubMed  Google Scholar 

  146. Chan, H., Babayan, V., Blyumin, E., Gandhi, C., Hak, K., Harake, D., Kumar, K., Lee, P., Li, T. T., Liu, H. Y., et al. (2010) The P-type ATPase superfamily, J. Mol. Microbiol. Biotechnol., 19, 5–104.

    CAS  PubMed  Google Scholar 

  147. Edgar, R. C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, 5, 113.

    PubMed Central  PubMed  Google Scholar 

  148. Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucleic Acids Res., 43, D261–D269.

    PubMed Central  PubMed  Google Scholar 

  149. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: a sequence logo generator, Genome Res., 14, 1188–1190.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Voorhees, R. M., Schmeing, T. M., Kelley, A. C., and Ramakrishnan, V. (2010) The mechanism for activation of GTP hydrolysis on the ribosome, Science, 330, 835–838.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307–321.

    CAS  PubMed  Google Scholar 

  152. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731–2739.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Van Raaij, M. J., Abrahams, J. P., Leslie, A. G., and Walker, J. E. (1996) The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B, Proc. Natl. Acad. Sci. USA, 93, 6913–6917.

    PubMed Central  PubMed  Google Scholar 

  154. Krissinel, E., and Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Cryst., D60, 2256–2268.

    CAS  Google Scholar 

  155. Schomburg, I., Chang, A., Placzek, S., Sohngen, C., Rother, M., Lang, M., Munaretto, C., Ulas, S., Stelzer, M., Grote, A., et al. (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA, Nucleic Acids Res., 41, D764–772.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Dimroth, P. (1997) Primary sodium ion translocating enzymes, Biochim. Biophys. Acta, 1318, 11–51.

    CAS  PubMed  Google Scholar 

  157. Dimroth, P., and von Ballmoos, C. (2008) ATP synthesis by decarboxylation phosphorylation, Results Probl. Cell Differ., 45, 153–184.

    CAS  PubMed  Google Scholar 

  158. Hilpert, W., and Dimroth, P. (1982) Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient, Nature, 296, 584–585.

    CAS  PubMed  Google Scholar 

  159. Biegel, E., and Muller, V. (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase, Proc. Natl. Acad. Sci. USA, 107, 18138–18142.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Laubinger, W., and Dimroth, P. (1988) Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump, Biochemistry, 27, 7531–7537.

    CAS  PubMed  Google Scholar 

  161. Takase, K., Yamato, I., and Kakinuma, Y. (1993) Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na+-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell, J. Biol. Chem., 268, 11610–11616.

    CAS  PubMed  Google Scholar 

  162. Solioz, M., and Davies, K. (1994) Operon of vacuolartype Na+-ATPase of Enterococcus hirae, J. Biol. Chem., 269, 9453–9459.

    CAS  PubMed  Google Scholar 

  163. Cheng, J., Guffanti, A. A., and Krulwich, T. A. (1997) A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore, Mol. Microbiol., 23, 1107–1120.

    CAS  PubMed  Google Scholar 

  164. Malinen, A. M., Belogurov, G. A., Baykov, A. A., and Lahti, R. (2007) Na+-pyrophosphatase: a novel primary sodium pump, Biochemistry, 46, 8872–8878.

    CAS  PubMed  Google Scholar 

  165. Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Mulkidjanian.

Additional information

We dedicate this paper to Professor Vladimir P. Skulachev on the occasion of his 80th birthday and in appreciation of his seminal contribution to the field of science that, many years ago, has been named bioenergetics at his suggestion.

Published in Russian in Biokhimiya, 2015, Vol. 80, No. 5, pp. 590–611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dibrova, D.V., Galperin, M.Y., Koonin, E.V. et al. Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry Moscow 80, 495–516 (2015). https://doi.org/10.1134/S0006297915050016

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050016

Key words

Navigation