Skip to main content

Polarisation Vision of Crustaceans

  • Chapter
  • First Online:
Polarized Light and Polarization Vision in Animal Sciences

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

The photoreceptor design of crustaceans, often containing regular arrays of intrinsically polarisation-sensitive microvilli, has had a profound influence on the visual biology of this subphylum. The land-based arthropods (insects and arachnids) also construct photoreceptors from ordered microvilli; however while in many species polarisation sensitivity results, a general overview of these groups suggests a major difference. With notable exceptions discussed in this chapter, many crustaceans seem to have “invested” in polarisation vision more than colour vision. This may be the result of the relatively limited spectral environment found in much of the aquatic world or due to the information content in polarisation being as useful as colour. The terrestrial arthropods are generally trichromatic with specialised visual areas for polarisation-specific tasks. Crustaceans are mostly di- or monochromats and most of their visual field displays polarisation sensitivity. This chapter examines the anatomical, neurophysiological and behavioural evidence for polarisation vision in a few of the many crustacean groups. Common themes are emerging such as the possession of vertical and horizontal E-vector sensitivity. This two-channel orthogonality is carried through the neural processing of information and reflected in behavioural capability. A few groups such as the stomatopods possess both complex colour and polarisation sensitivity, and particularly in this group, the evolutionary pressures responsible are centred on unique polarisation signalling structures used in social interaction. Other functions of polarisation sensitivity in crustaceans include navigation, phototaxis and potentially increasing visual range through de-hazing in a turbid world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahyong ST, Harling C (2000) The phylogeny of the stomatopod Crustacea. Aust J Zool 48:607–642

    Google Scholar 

  • Alkaladi A, How M, Zeil J (2013) Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. J Comp Physiol A 199:99–113

    Google Scholar 

  • Bainbridge R, Waterman TH (1957) Polarized light and the orientation of two marine crustacea. J Exp Biol 34:342–364

    Google Scholar 

  • Ball EE (1977) Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat. Tissue Cell 9:521–536

    PubMed  CAS  Google Scholar 

  • Bardolph M, Stavn RH (1978) Polarized light sensitivity in the stage I zoea of the mud crab Panopeus herbstii. Mar Biol 46:327–33

    Google Scholar 

  • Barta A, Horváth G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226:429–437

    PubMed  Google Scholar 

  • Baylor ER, Smith FE (1953) The orientation of cladocera to polarized light. Am Nat 87:97–101

    Google Scholar 

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vis Res 17:1019–1028

    PubMed  CAS  Google Scholar 

  • Bernáth B, Gál J, Horváth G (2004) Why is it worth flying at dusk for aquatic insects? Polarotactic water detection is easiest at low solar elevations. J Exp Biol 207:755–765

    PubMed  Google Scholar 

  • Berón de Astrada M, Tuthill J, Tomsic D (2009) Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae). J Comp Physiol A 195:791–798

    Google Scholar 

  • Caldwell RL, Dingle H (1976) Stomatopods. Sci Am 234(1):80–89

    Google Scholar 

  • Chiou TH, Kleinlogel S, Cronin TW, Caldwell R, Loeffler B, Siddiqi A, Goldizen A, Marshall J (2008) Circular polarization vision in a stomatopod crustacean. Curr Biol 18:429–434

    PubMed  CAS  Google Scholar 

  • Chiou TH, Marshall NJ, Caldwell RL, Cronin TW (2011) Changes in light-reflecting properties of signalling appendages alter mate choice behaviour in a stomatopod crustacean Haptosquilla trispinosa. Mar Freshw Behav Physiol 44:1–11

    Google Scholar 

  • Chiou TH, Place AR, Caldwell RL, Marshall NJ, Cronin TW (2012) A novel function for a carotenoid: astaxanthin used as a polarizer for visual signalling in a mantis shrimp. J Exp Biol 215:584–589

    PubMed  CAS  Google Scholar 

  • Chiussi R, Diaz H (2002) Orientation of the fiddler crab, Uca cumulanta: responses to chemical and visual cues. J Chem Ecol 28:1787–96

    PubMed  CAS  Google Scholar 

  • Cronin TW, Marshall NJ (1989) A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature 339:137–140

    Google Scholar 

  • Cronin TW, Shashar N (2001) The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J Exp Biol 204:2461–2467

    PubMed  CAS  Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell RL (1994a) The intrarhabdomal filters in the retinas of mantis shrimps. Vis Res 34:279–291

    PubMed  CAS  Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell RL, Shashar N (1994b) Specialization of retinal function in the compound eyes of mantis shrimps. Vis Res 34:2639–2656

    PubMed  CAS  Google Scholar 

  • Cronin TW, Marshall NJ, Quinn CA, King CA (1994c) Ultraviolet photoreception in mantis shrimp. Vis Res 34:1443–1452

    PubMed  CAS  Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH (2003a) Polarization signals in the marine environment. In: Shaw JA, Tyo JS (eds) Polarization science and remote sensing, vol 5158, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), pp 85–92

    Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH (2003b) Polarization vision and its role in biological signaling. Integr Comp Biol 43:549–558

    PubMed  Google Scholar 

  • Cronin TW, Chiou TH, Caldwell RL, Roberts N, Marshall J (2009) Polarization signals in mantis shrimps. In: Shaw JA, Tyo JS (eds) Polarization science and remote sensing, vol 7461, Proceedings of SPIE

    Google Scholar 

  • Dacke M, Nilsson DE, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473

    CAS  Google Scholar 

  • Doujak FE (1984) Electrophysiological measurement of photoreceptor membrane dichroism and polarization sensitivity in a Grapsid crab. J Comp Physiol 154:597–605

    Google Scholar 

  • Eguchi E, Waterman TH (1966) Fine structure patterns in crustacean rhabdoms. In: Bernard GC (ed) The functional organisation of the compound eye. Pergamon, Oxford, pp 105–124

    Google Scholar 

  • Eguchi E, Waterman TH (1968) Cellular basis for polarized light perception in the spider crab, Libinia. Z Zellforsch Mik Ana 84:87–101

    CAS  Google Scholar 

  • Eguchi E, Goto T, Waterman TH (1982) Unorthodox pattern of microvilli and intercellular junctions in regular retinular cells of the porcellanid crab Petro listhes. Cell Tissue Res 222:493–513

    PubMed  CAS  Google Scholar 

  • Frank TM, Widder EA (1994) Evidence for behavioral sensitivity to near-UV light in the deep-sea crustacean Systellaspis debilis. Mar Biol 118:279–284

    Google Scholar 

  • Gál J, Horváth G, Barta A, Wehner R (2001a) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full moon: comparison of the polarization of moonlit and sunlit skies. J Geophys Res D 106:22647–22653

    Google Scholar 

  • Gál J, Horváth G, Meyer-Rochow VB, Wehner R (2001b) Polarization patterns of the summer sky and its neutral points measured by full-sky imaging polarimetry in Finnish Lapland north of the Arctic Circle. Proc R Soc A 457:1385–1399

    Google Scholar 

  • Gál J, Horváth G, Meyer-Rochow VB (2001c) Measurement of the reflection-polarization pattern of the flat water surface under a clear sky at sunset. Remote Sens Environ 76:103–111

    Google Scholar 

  • Gaten E, Shelton PMJ, Herring PJ (1992) Regional morphological variations in the compound eyes of certain mesopelagic shrimps in relation to their habitat. J Mar Biol Assoc UK 72:61–75

    Google Scholar 

  • Glantz RM (1996a) Polarization sensitivity in crayfish lamina monopolar neurons. J Comp Physiol A 178:413–425

    Google Scholar 

  • Glantz RM (1996b) Polarization sensitivity in the crayfish optic lobe: peripheral contributions to opponency and directionally selective motion detection. J Neurophysiol 76:3404–3414

    PubMed  CAS  Google Scholar 

  • Glantz RM (2001) Polarization analysis in the crayfish visual system. J Exp Biol 204:2383–2390

    PubMed  CAS  Google Scholar 

  • Glantz RM (2007) The distribution of polarization sensitivity in the crayfish retinula. J Comp Physiol A 193:893–901

    Google Scholar 

  • Glantz RM (2008) Polarization vision in crayfish motion detectors. J Comp Physiol A 194:565–575

    Google Scholar 

  • Glantz RM, McIsaac A (1998) Two-channel polarization analyzer in the sustaining fiber dimming fiber ensemble of crayfish visual system. J Neurophysiol 80:2571–2583

    PubMed  CAS  Google Scholar 

  • Glantz RM, Schroeter J (2006) Polarization contrast and motion detection. J Comp Physiol A 192:905–914

    Google Scholar 

  • Glantz RM, Schroeter J (2007) Orientation by polarized light in the crayfish dorsal light reflex: behavioral and neurophysiological studies. J Comp Physiol A 193:371–384

    Google Scholar 

  • Goddard SM, Forward RB (1991) The role of the underwater polarized light pattern, in sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491

    Google Scholar 

  • Goldstein D (2003) Polarized light. Dekker, Basel

    Google Scholar 

  • Hámori J, Horridge GA (1966a) The lobster optic lamina I. General organization. J Cell Sci 1:249–256

    Google Scholar 

  • Hámori J, Horridge GA (1966b) The lobster optic lamina II. Types of synapse. J Cell Sci 1:257–269

    Google Scholar 

  • Hartwick RF (1976) Beach orientation in talitrid amphipods: capacities and strategies. Behav Ecol Sociobiol 1:447–458

    Google Scholar 

  • Hawryshyn CW (1992) Polarization vision in fish. Am Sci 80:164–175

    Google Scholar 

  • Hawryshyn CW (2000) Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector. Philos Trans R Soc Lond B Biol Sci 355:1187–1190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hecht E (2001) Optics. Addison-Wesley, Reading, MA, USA

    Google Scholar 

  • Hegedüs R, Horváth G (2004a) How and why are uniformly polarization-sensitive retinae subject to polarization-related artefacts? Correction of some errors in the theory of polarization-induced false colours. J Theor Biol 230:77–87

    PubMed  Google Scholar 

  • Hegedüs R, Horváth G (2004b) Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation. Vis Res 44:2337–2348

    PubMed  Google Scholar 

  • Hegedüs R, Horváth Á, Horváth G (2006) Why do dusk-active cockchafers detect polarization in the green? The polarization vision in Melolontha melolontha is tuned to the high polarized intensity of downwelling light under canopies during sunset. J Theor Biol 238:230–244

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007a) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356

    Google Scholar 

  • Hegedüs R, Barta A, Bernáth B, Meyer-Rochow VB, Horváth G (2007b) Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage. Appl Opt 46:6019–6032

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Horváth G (2007c) Anomalous celestial polarization caused by forest fire smoke: why do some insects become visually disoriented under smoky skies? Appl Opt 46:2717–2726

    PubMed  Google Scholar 

  • Hegedüs R, Åkesson S, Wehner R, Horváth G (2007d) Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies. Proc R Soc A 463:1081–1095

    Google Scholar 

  • Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J (2006) The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. J Exp Biol 209:4140–4153

    PubMed  Google Scholar 

  • Horváth G (1995) Reflection-polarization patterns at flat water surfaces and their relevance for insect polarization vision. J Theor Biol 175:27–37

    PubMed  Google Scholar 

  • Horváth G, Varjú D (1995) Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell’s window of the flat water surface. Vis Res 35:1651–1666

    PubMed  Google Scholar 

  • Horváth G, Varjú D (1997) Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. J Exp Biol 200:1155–1163

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Google Scholar 

  • Horváth G, Wehner R (1999) Skylight polarization as perceived by desert ants and measured by video polarimetry. J Comp Physiol A 184:1–7, Erratum 184: 347-349 (1999)

    Google Scholar 

  • Horváth G, Barta A, Gál J, Suhai B, Haiman O (2002a) Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl Opt 41:543–559

    PubMed  Google Scholar 

  • Horváth G, Gál J, Labhart T, Wehner R (2002b) Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. J Exp Biol 205:3281–3298

    PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325

    Google Scholar 

  • Horváth G, Kriska G, Malik P, Hegedüs R, Neumann L, Åkesson S, Robertson B (2010) Asphalt surfaces as ecological traps for water-seeking polarotactic insects: how can the polarized light pollution of asphalt surfaces be reduced? Environmental remediation technologies, regulations and safety. Nova Science Publishers, Inc., Hauppauge, NY

    Google Scholar 

  • How MJ, Marshall NJ (2014a) Polarization distance: a framework for modelling object detection by polarization vision systems. Proc R Soc B Biol Sci 281(1776):20131632

    Google Scholar 

  • How MJ, Pignatelli V, Temple SE, Marshall NJ, Hemmi JM (2012) High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J Exp Biol 215:2128–2134

    PubMed  Google Scholar 

  • Ivanoff A, Waterman TH (1958a) Elliptical polarization of submarine illumination. J Mar Res 16:255–282

    Google Scholar 

  • Ivanoff A, Waterman TH (1958b) Factors, mainly depth and wavelength, affecting the degree of underwater light polarization. J Mar Res 16:283–307

    Google Scholar 

  • Jerlov NG (1976) Marine optics, Elsevier oceanography series. Elsevier, Amsterdam

    Google Scholar 

  • Johnsen S, Marshall NJ, Widder EA (2011) Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton. Philos Trans R Soc B 366:655–670

    Google Scholar 

  • Jordan TM, Partridge JC, Roberts NW (2012) Non-polarizing broadband multilayer reflectors in fish. Nat Photonics 6:759–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    PubMed  CAS  Google Scholar 

  • Kirschfeld K (1976) The resolution of lens and compound eyes. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Heidelberg, pp 354–370

    Google Scholar 

  • Kleinlogel S, Marshall NJ (2005) Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp). Cell Tissue Res 321:273–284

    PubMed  CAS  Google Scholar 

  • Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209:4262–4272

    PubMed  Google Scholar 

  • Kleinlogel S, Marshall NJ (2009) Ultraviolet polarisation sensitivity in the stomatopod crustacean Odontodactylus scyllarus. J Comp Physiol A 195:1153–1162

    Google Scholar 

  • Kleinlogel S, White AG (2008) The secret world of shrimps: polarisation vision at its best. PLoS One 3(5):e2190

    PubMed  PubMed Central  Google Scholar 

  • Kleinlogel S, Marshall NJ, Horwood JM, Land MF (2003) Neuroarchitecture of the color and polarization vision system of the stomatopod haptosquilla. J Comp Neurol 467:326–342

    PubMed  Google Scholar 

  • Kolb G (1977) Structure of eye of Pieris brasicae L. (Lepidoptera). Zoomorphologie 87:123–146

    Google Scholar 

  • Krebs W, Lietz R (1982) Apical region of the crayfish retinula. Cell Tissue Res 222:409–415

    PubMed  CAS  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybees compound eye—polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430

    PubMed  CAS  Google Scholar 

  • Land MF (1981) Optics of the eyes of Phronima and other deep-sea amphipods. J Comp Physiol 145:209–226

    Google Scholar 

  • Land MF (1984) Crustacea. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 401–438

    Google Scholar 

  • Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Land MF, Marshall JN, Brownless D, Cronin TW (1990) The eye-movements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J Comp Physiol A 167:155–166

    Google Scholar 

  • Leggett LMW (1976) Polarized light-sensitive interneurones in a swimming crab. Nature 262:709–711

    PubMed  CAS  Google Scholar 

  • Loew ER (1976) Light and photoreceptor degeneration in the Norway lobster, Nephrops norvegicus L. Proc R Soc Lond B 193:31–44

    PubMed  CAS  Google Scholar 

  • Luschi P, Seppia CD, Crosio E (1997) Orientation during short-range feeding in the crab Dotilla wichmanni. J Comp Physiol A 181:461–468

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Lythgoe JN, Hemmings CC (1967) Polarized light and underwater vision. Nature 213:893–895

    PubMed  CAS  Google Scholar 

  • Macagno ER, Lopresti V, Levinthal C (1973) Structure and development of neuronal connections in isogenic organisms: Variations and similarities in the optic system of Daphnia magna. Proc Natl Acad Sci 70:57–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Manor S, Polak O, Saidel WM, Goulet TL, Shashar N (2009) Light intensity mediated polarotaxis in Pontella karachiensis (Pontellidae, Copepoda). Vis Res 49:2371–2378

    PubMed  Google Scholar 

  • Marshall NJ (1988) A unique color and polarization vision system in mantis shrimps. Nature 333:557–560

    PubMed  CAS  Google Scholar 

  • Marshall NJ, Land MF (1993) Some optical features of the eyes of stomatopods 2. Ommatidial design, sensitivity and habitat. J Comp Physiol A 173:583–594

    Google Scholar 

  • Marshall NJ, Messenger JB (1996) Colour-blind camouflage. Nature 382:408–409

    CAS  Google Scholar 

  • Marshall J, Oberwinkler J (1999) The colourful world of the mantis shrimp. Nature 401:873–874

    PubMed  CAS  Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991a) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda) 1. Compound eye structure—the detection of polarized light. Philos Trans R Soc Lond B 334:33–56

    Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991b) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda) 2. Color pigments in the eyes of stomatopod crustaceans—Polychromatic vision by serial and lateral filtering. Philos Trans R Soc Lond B 334:57–84

    Google Scholar 

  • Marshall NJ, Kent J, Cronin TW (1999a) Visual adaptations in crustaceans. In: Archer SN, Djamgoz MBA, Lowe E, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer, London, pp 285–328

    Google Scholar 

  • Marshall J, Cronin TW, Shashar N, Land M (1999b) Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 9:755–758

    PubMed  CAS  Google Scholar 

  • Marshall J, Cronin TW, Kleinlogel S (2007) Stomatopod eye structure and function: a review. Arthropod Struct Dev 36:420–448

    PubMed  Google Scholar 

  • Menzel R (1975) Polarised light sensitivity in arthropods. In: Evans GC (ed) Light as an ecological factor II. Blackwell, Oxford, pp 289–303

    Google Scholar 

  • Meyer-Rochow VB (1971) A crustacean-like organization of insect rhabdoms. Cytobiologie 4:241–249

    Google Scholar 

  • Meyer-Rochow VB (1975) Larval and adult eye of the western rock lobster (Panulirus longipes). Cell Tissue Res 162:439–457

    PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB (1978) The eyes of mesopelagic crustaceans: II. Streetsia challengeri (Amphipoda). Cell Tissue Res 186:337–349

    PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB (1982) The divided eye of the isopod Glyptonotus antarcticus: effects of unilateral dark adaptation and temperature elevation. Proc R Soc Lond B Biol Sci 215:433–450

    Google Scholar 

  • Meyer-Rochow VB, Tiang KM (1984) The eye of Jasus edwardsii (Crustacea, Decapoda): electrophysiology, histology and behaviour. Zoologica 45:1–61

    Google Scholar 

  • Miller CS, Johnson DH, Schroeter JP, Myint LL, Glantz RM (2002) Visual signals in an optomotor reflex: systems and information theoretic analysis. J Comput Neurosci 13:5–21

    PubMed  Google Scholar 

  • Mote M (1974) Polarization sensitivity. J Comp Physiol 90:389–403

    Google Scholar 

  • Muller KJ (1973) Photoreceptors in the crayfish compound eye: electrical interactions between cells as related to polarized light sensitivity. J Physiol Lond 232:573–595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munk O (1970) On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Videnskabelige Meddelelser Dansk Naturhistorisk Forening 133:85–120

    Google Scholar 

  • Nalbach HO (1990) Visually elicited escape in crabs. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Advances in life sciences: frontiers in crustacean neurobiology. Birkhauser, Basel

    Google Scholar 

  • Nässel DR (1975) The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kröyer). Cell Tissue Res 163:445–464

    PubMed  Google Scholar 

  • Nässel DR (1976) Retina and retinal projection on lamina ganglionaris of crayfish Pacifastacus leniusculus (Dana). J Comp Neurol 167:341–359

    Google Scholar 

  • Nässel DR (1977) Types and arrangements of neurons in crayfish optic lamina. Cell Tissue Res 179:45–75

    PubMed  Google Scholar 

  • Nässel DR, Waterman TH (1977) Golgi em evidence for visual formation channeling in crayfish lamina langlionaris. Brain Res 130:556–563

    Google Scholar 

  • Nässel DR, Waterman TH (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol 131:205–216

    Google Scholar 

  • Neumeyer C (1991) Evolution of colour vision. In: Cronly-Dillon JR, Gregory RL (eds) Vision and visual dysfunction: evolution of the eye and visual system, vol 2. Macmillan, London, pp 284–305

    Google Scholar 

  • Neumeyer C (1998) Color vision in lower vertebrates. In: Backhaus WGK, Kliegl R, Werner JS (eds) Color vision—perspectives from different disciplines. Walter de Gruyter & Co., Berlin, pp 149–162

    Google Scholar 

  • Neville AC, Luke BM (1971) Form optical activity in crustacean cuticle. J Insect Physiol 17:519–526

    Google Scholar 

  • Novales-Flamarique I (2011) Unique photoreceptor arrangements in a fish with polarized light discrimination. J Comp Neurol 519:714–737

    PubMed  Google Scholar 

  • Novales-Flamarique I, Browman HI (2000) Wavelength-dependent polarization orientation in Daphnia. J Comp Physiol A 186:1073–1087

    PubMed  CAS  Google Scholar 

  • Pardi L (1957) L’orientamento astronomico degli animali: risultati e problemiattuali. Bolletino di zoologia 24:473–523

    Google Scholar 

  • Pignatelli V, Temple SE, Chiou TH, Roberts NW, Collin SP, Marshall NJ (2011) Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philos Trans R Soc B 366:734–741

    Google Scholar 

  • Pomozi I, Horváth G, Wehner R (2001) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942

    PubMed  CAS  Google Scholar 

  • Porter ML, Zhang Y, Desai S, Caldwell RL, Cronin TW (2010) Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans. J Exp Biol 213:3473–3486

    PubMed  CAS  Google Scholar 

  • Ritz DA (1991) Polarised light responses in the shrimp Palaemonetes vulgaris (Say). J Exp Mar Biol Ecol 154:245–250

    Google Scholar 

  • Roberts NW, Chiou TH, Marshall NJ, Cronin TW (2009) A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nat Photonics 3:641–644

    CAS  Google Scholar 

  • Rutherford DJ, Horridge GA (1965) The rhabdom of the lobster eye. Q J Microsc Sci 106:119–130

    PubMed  CAS  Google Scholar 

  • Sabbah S, Barta A, Gál J, Horváth G, Shashar N (2006) Experimental and theoretical study of skylight polarization transmitted through Snell’s window of a flat water surface. J Opt Soc Am A 23:1978–1988

    Google Scholar 

  • Sabra R, Glantz RM (1985) Polarization sensitivity of crayfish photoreceptors is correlated with their termination sites in the lamina ganglionaris. J Comp Physiol A 156:315–318

    Google Scholar 

  • Schechner YY, Karpel N (2005) Recovery of underwater visibility and structure by polarization analysis. IEEE J Ocean Eng 30:570–587

    Google Scholar 

  • Schiff H (1963) Dim light vision of Squilla mantis L. Am J Physiol 205:927–940

    PubMed  CAS  Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdomes im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zelforsch 99:528–559

    Google Scholar 

  • Schöne H (1968) Agonistic and sexual display in aquatic and semi-terrestrial Brachyuran crabs. Am Zool 8:641–645

    Google Scholar 

  • Schöne H, Schöne H (1961) Eyestalk movements induced by polarized light in the ghost crab, Ocypode quadrata. Science 134:675–676

    Google Scholar 

  • Schwind R (1983) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 232:53–63

    PubMed  CAS  Google Scholar 

  • Schwind R (1999) Daphnia pulex swims towards the most strongly polarized light: a response that leads to ‘shore flight’. J Exp Biol 202:3631–3635

    PubMed  Google Scholar 

  • Schwind R, Horváth G (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaften 80:82–83

    Google Scholar 

  • Shashar N, Addessi L, Cronin TW (1995) Polarization vision as a mechanism for detection of transparent objects. In: Gulko D, Jokiel V (eds) Ultraviolet radiation and coral reefs. HIMB Technical Report 41, pp 207–2211

    Google Scholar 

  • Shaw SR (1966) Polarized light responses from crab retinula cells. Nature 211:92–93

    PubMed  CAS  Google Scholar 

  • Shelton PMJ, Gaten E, Herring PJ (1992) Adaptations of tapeta in the eyes of mesopelagic decapod shrimps to match the oceanic irradiance distribution. J Mar Biol Assoc UK 72:77–88

    Google Scholar 

  • Siebeck O (1968) “Uferflucht” und optische Orientierung pelagischer Crustaceen. Arch Hydrobiol Suppl 35:1–118

    Google Scholar 

  • Sipőcz B, Hegedüs R, Kriska G, Horváth G (2008) Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry. Appl Opt 47(34):H1–H10

    PubMed  Google Scholar 

  • Smith FE, Baylor ER (1953) Color responses in the cladocera and their ecological significance. Am Nat 87:49–55

    Google Scholar 

  • Smith KC, Macagno ER (1990) UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda): a 4th spectral class in single ommatidia. J Comp Physiol A 166:597–606

    PubMed  CAS  Google Scholar 

  • Snyder AW (1973) Polarisation sensitivity of individual retinula cells. J Comp Physiol 83:331–360

    Google Scholar 

  • Snyder AW, Laughlin SB (1975) Dichroism and absorption by photoreceptors. J Comp Physiol 100:101–116

    Google Scholar 

  • Storz UC, Paul RJ (1998) Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J Comp Physiol A 183:709–717

    Google Scholar 

  • Stowe S (1977) The retina-lamina projection in the crab Leptograpsus variegatus. Cell Tissue Res 185:515–525

    PubMed  CAS  Google Scholar 

  • Stowe S (1980) Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res 211:419–440

    PubMed  CAS  Google Scholar 

  • Stowe S (1981) Effects of illumination changes on rhabdom synthesis in a crab. J Comp Physiol 142:19–25

    Google Scholar 

  • Stowe S (1983) A theoretical explanation of intensity-independant variation of polarisation sensitivity in crustacean retinular cells. J Comp Physiol 153:435–441

    Google Scholar 

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII(6). Springer, Heidelberg, pp 357–344

    Google Scholar 

  • Suhai B, Horváth G (2004) How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study. J Opt Soc Am A 21:1669–1676

    Google Scholar 

  • Sztarker J, Strausfeld NJ, Andrew D, Tomsic D (2009) Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol 513:129–150

    PubMed  Google Scholar 

  • Talbot CM, Marshall J (2010) Polarization sensitivity in two species of cuttlefish—Sepia plangon (Gray 1849) and Sepia mestus (Gray 1849)—demonstrated with polarized optomotor stimuli. J Exp Biol 213:3364–3370

    PubMed  Google Scholar 

  • Talbot CM, Marshall JN (2011) The retinal topography of three species of coleoid cephalopod: significance for perception of polarized light. Philos Trans R Soc B 366:724–733

    Google Scholar 

  • Thoen HH, How MJ, Chiou T-H, Marshall J (2014) A different form of color vision in Mantis shrimp. Science 343:411–413

    PubMed  CAS  Google Scholar 

  • Tuthill JC, Johnsen S (2006) Polarization sensitivity in the red swamp crayfish Procambarus clarkii enhances the detection of moving transparent objects. J Exp Biol 209:1612–1616

    PubMed  Google Scholar 

  • Ugolini A, Tiribilli B, Boddi V (2002) The sun compass of the sandhopper Talitrus saltator: the speed of the chronometric mechanism depends on the hours of light. J Exp Biol 205:3225–3230

    PubMed  Google Scholar 

  • Umminger BL (1968a) Polarotaxis in copepods I. An endogenous rhythm in polarotaxis in Cyclops vernalis and its relation to vertical migration. Biol Bull 135:239–251

    Google Scholar 

  • Umminger BL (1968b) Polarotaxis in copepods II. The ultrastructural basis and ecological significance of polarized light sensitivity in copepods. Biol Bull 135:252–261

    Google Scholar 

  • Verkhovskaya IN (1940) The influence of polarised light upon the phototaxis of certain organisms. Bull Moscow Nat Hist Soc Biol Sec 49:101–113 (in Russian)

    Google Scholar 

  • Via SE, Forward RB Jr (1975) The ontogeny and spectral sensitivity of polarotaxis in larvae of the crab Rhithropanopeus harrisi (Gould). Biol Bull 149:251–266

    Google Scholar 

  • Waterman TH (1954) Polarization patterns in submarine illumination. Science 120:927–932

    PubMed  CAS  Google Scholar 

  • Waterman TH (1977) The bridge between visual input and central programming in crustaceans. In: Hoyle G (ed) Identified neurons and behaviour of arthropods. Plenum, New York

    Google Scholar 

  • Waterman TH (1981) Polarisation sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Heidelberg, pp 283–469

    Google Scholar 

  • Waterman TH (1985) Natural polarised light and vision. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 63–113

    Google Scholar 

  • Waterman TH, Fernandez HR (1970) E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Zeitschrift für Vergleichende Physiologie 68:154–174

    Google Scholar 

  • Waterman TH, Horch KW (1966) Mechanism of polarized light perception. Science 154:467–475

    PubMed  CAS  Google Scholar 

  • Wehner R (1983) The perception of polarized light. Symp Soc Exp Biol 36:331–369

    PubMed  CAS  Google Scholar 

  • Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161:511–531

    Google Scholar 

  • Wehner R (2001) Polarization vision—a uniform sensory capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Yamaguchi T, Katagiri Y, Ochi K (1976) Polarised light responses from retinular cells and sustaining fibres of the mantis shrimp. Biol J Okayama Univ 17:61–66

    Google Scholar 

  • Yamaguchi T, Okada Y, Nakatani K, Ohta N (1984) Functional morphology of visual interneurons in the crayfish central nervous system. In: Aoki K (ed) Animal behaviour: neurophysiological and ethological approaches. Science Society Press, Tokyo, pp 109–122

    Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from ‘crabworld’: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    PubMed  CAS  Google Scholar 

  • Zeil J, Layne J (2002) Path integration in fiddler crabs and its relation to habitat and social life. In: Weise K (ed) Crustacean experimental systems in neurobiology. Springer, Heidelberg

    Google Scholar 

  • Zeil J, Nalbach G, Nalbach HO (1986) Eyes, eye stalks and the visual world of semi-terrestial crabs. J Comp Physiol A 159:801–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Marshall .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Colour Version of Fig. 7.1

Rhabdom construction in crustaceans. (a) Generalised apposition compound eye, ommatidium and diagrammatic three-dimensional transverse section through rhabdomere (in part after Kirschfeld 1976; Stowe 1977 and courtesy of Mike Bok). R1–R7 cells numbered and orthogonal microvilli made by opposite rhabdomeres and resultant E-vector sensitivities (double-headed arrows) coloured yellow and blue. (b) Transmission electron micrograph detail of orthogonal microvilli in longitudinal section from stomatopod. Scale 0.2 μm (CDR 396 kb)

Colour Version of Fig. 7.2

Orientation of crustacean microvilli relative to outside world is maintained horizontal vertical. (a) Fiddler crab female Uca vomeris (Photograph, Martin How) and inset close-up of fiddler crab eye (Photograph, Jochen Zeil). Note although body is tilted, eyes remain vertical to local substrate. (b) Light micrograph transverse section through equatorial R1–R7 rhabdoms of fiddler crab with insets showing enlarged single rhabdom (left) and diagrammatic representation of single rhabdom (right) [after Alkaladi et al. (2013) and Marshall et al. (1991a)]. White arrows denote E-vector sensitivity directions and microvillar directions (CDR 136 kb)

Colour Version of Fig. 7.4

Orientation of microvilli relative to outside world in stomatopod eye with mid-band oriented horizontal. (a) Right eye of O. scyllarus showing expanded portion of ventral periphery with diagrammatic transverse sections through R8 (left) and R1–R7 (right) cell rhabdom levels. (b) Semi-thin (2 μm) transverse section through mid-band and peripheral retina in Coronis excavatrix at transition between R8 and R1–R7 cell level and diagrammatic representation of rhabdoms (right) and microvillar directions/E-vector sensitivities (double-headed arrows), in various eye regions. Only R8 cells show in dorsal and ventral periphery. Grey shaded areas: R8 cell and microvillar orthogonality in rows 1–4 reduces PS. Green shaded area: CPS cells in Odontodactylus species and LPS in e.g. Gonodactylus chiragra. Blue shaded areas: 500 nm blue/green LPS cells. Violet shaded area: UV-sensitive R8 cells. Inset: red bounded diagram is erroneous representation of three-directional rhabdomal unit previously published (Marshall 1988). VP: ventral periphery, DP: Dorsal periphery, DR1–R7: distal R1–R7 cells, PR1–R7: proximal R1–R7 cells. Scale 100 μm. (c) Extensive rotational eye movements of O. Scyllarus eye in diagrammatic form. Eyes are most often held close to 40° (CDR 166 kb)

Colour Version of Fig. 7.7

Aspects of circular polarisation vision in stomatopods. (a) Diagram of longitudinal section through stomatopod ommatidia including mid-band rows 1–6 and representative ommatidia from dorsal and ventral hemispheres (DH, VH) or peripheral regions. (b) Rows 5 and 6 that construct CPS in semi-thin section at transition between oval profile R8 cells and diamond profile R1–R7 cells. Scale 10 μm. (c) Diagrammatic representation of row 6 rhabdom. As circular polarised light passes through R8 cells, it is converted through 1/4 wave retardation to linearly polarised light in one of two directions, depending on CPL handedness. The R1–R7 cells of these rows are in the correct orientation to absorb this ongoing light, being set at 45° to the R8 cell’s fast axis [after Chiou et al. (2011)]. (d) Transmission electron micrograph of R8 cell in row 6 in transverse (left) and longitudinal section (right) showing unidirectional microvilli. This cell has dual function as 1/4 wave retarder and UV linear PS as shown by violet double-headed arrow (Fig. 7.11). Scale 1 μm at left, 0.2 μm at right. (e) Transmission electron micrograph of R1–R7 cells in row 6 in transverse (left) and longitudinal section (right) showing orthogonal microvilli that are sensitive to CPL in Odontodactylus species and LPL in Gonodactylus chiragra. Scale 2 μm at left, 0.2 μm at right (CDR 334 kb)

Colour Version of Fig. 7.8

Behavioural tests showing E-vector and CPL handedness discrimination in stomatopod Odontodactylus scyllarus. (a) Experimental paradigm to demonstrate linear E-vector discrimination in O. scyllarus from cube-shaped food containers with polarising filters glued to one side, top: no camera filter, mid: vertical polarising filter to show different feeding cubes and bottom with E-vector lines drawn on photograph. Stomatopods can learn to choose vertically polarised from horizontally polarised food containers. Right: stomatopod reaching inside a smashed open feeding container (after Marshall et al. 1999). (b) Details of CPL paradigm. Top: construction of feeding containers with polarising filter and 1/4 wave plate glued to end. Other end is sealed with coverslip after food is placed inside and animal must choose and break open tube with handedness of CPL trained to. Middle: Feeding containers photographed through left- and right-handed CP filters and no filter (as we see them). Bottom: Graph of choices (correct black and incorrect grey out of an array of three feeding tubes where one was correct choice) of 7 animals trained to left- or right-handed CP feeding containers. Stars indicate statistical significance [after Chiou et al. (2008)] (CDR 230 kb)

Colour Version of Fig. 7.9

Animals living in close association with horizontal reflective surfaces, such as fiddler crabs Uca sp., may experience and utilise a strong horizontally polarised large field. (a) Waving coloured and possibly polarised claw. (b) In the ventral part of the eye of Uca signata, more vertical than horizontal microvilli are found per band and may reduce glare from horizontal mud-flat habitat [after Alkaladi et al. (2013)] (CDR 172 kb)

Colour Version of Fig. 7.13

Gross morphology of chloral hydrate stained stomatopod optic neuropils showing partition of colour and polarisation. (a) The eye of a gonodactyloid stomatopod. Scale 1 mm. (b) Semi-thin section of eye in same orientation as a. (c) Transverse section at lamina cartridge level (dotted line in b showing segregation of lamina under each retinal subsection and differing cartridge morphologies. Scale 70 μm. (e) Enlargement of area boxed in b showing separate accessory lobes of ME and MI dedicated to MB. Scale 100 μm. (e, f) Section and drawing of section of proximal portion of retina and neuropils, mapping of mid-band rows and separation of polarisation information. The single accessory lobe in ME appears in two areas due to its curvature in and out of section plane. Lines show representative R8 cell axonal projections. Scale 100 μm. c: cornea, MB: mid-band retina, DH, VH: dorsal and ventral hemispheres or peripheral retina, LA: lamina, ME: medulla externa, MI: medulla interna = part of lobular complex, Ch1,Ch2: chiasmata between neuropils, Acc: Accessory lobes of ME or MI from mid-band [modified from Kleinlogel et al. (2003) and Marshall et al. (2007)] (CDR 101 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marshall, J., Cronin, T. (2014). Polarisation Vision of Crustaceans. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_7

Download citation

Publish with us

Policies and ethics