Skip to main content
Log in

Genes linked to species diversity in a sexually dimorphic communication signal in electric fish

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Sexually dimorphic behaviors are often regulated by androgens and estrogens. Steroid receptors and metabolism are control points for evolutionary changes in sexual dimorphism. Electric communication signals of South American knifefishes are a model for understanding the evolution and physiology of sexually dimorphic behavior. These signals are regulated by gonadal steroids and controlled by a simple neural circuit. Sexual dimorphism of the signals varies across species. We used transcriptomics to examine mechanisms for sex differences in electric organ discharges (EODs) of two closely related species, Apteronotus leptorhynchus and Apteronotus albifrons, with reversed sexual dimorphism in their EODs. The pacemaker nucleus (Pn), which controls EOD frequency (EODf), expressed transcripts for steroid receptors and metabolizing enzymes, including androgen receptors, estrogen receptors, aromatase, and 5α-reductase. The Pn expressed mRNA for ion channels likely to regulate the high-frequency activity of Pn neurons and for neuromodulator and neurotransmitter receptors that may regulate EOD modulations used in aggression and courtship. Expression of several ion channel genes, including those for Kir3.1 inward-rectifying potassium channels and sodium channel β1 subunits, was sex-biased or correlated with EODf in ways consistent with EODf sex differences. Our findings provide a basis for future studies to characterize neurogenomic mechanisms by which sex differences evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

11KT:

11-Ketotestosterone

11β-HSD:

11β-Hydroxysteroid dehydrogenase

17β-HSD:

17β-Hydroxysteroid dehydrogenase

5αDHT:

5α-Dihydrotestosterone

5HT:

Serotonin

AVT:

Arginine vasotocin

AR:

Androgen receptor

ER:

Estrogen receptor

BUSCO:

Benchmarking universal single-copy orthologs

CP-PPn:

Central posterior-prepacemaker nucleus

E2:

Estradiol

EOD:

Electric organ discharge

EODf:

Electric organ discharge frequency

GFR:

Gradual frequency rise

GO:

Gene ontology

GPER:

G-protein coupled estrogen receptor

GSI:

Gonadosomatic index

IHW:

Independent hypothesis weighted

JAR:

Jamming avoidance response

KChIP:

K+ channel-interacting protein

NCOA:

Nuclear receptor coactivator

NRIP:

Nuclear receptor interacting protein

PCs:

Principal components

Pn:

Pacemaker nucleus

SPPn:

Sublemniscal prepacemaker nucleus

SRC:

Steroid receptor coactivator

VMN:

Vocal motor nucleus

References

  • Aman TK, Grieco-Calub TM, Chen C, Rusconi R, Slat EA, Isom LL, Raman IM (2009) Regulation of persistent Na current by interactions between b subunits of voltage-gated Na channels. J Neurosci 29(7):2027–2042. doi:10.1523/Jneurosci.4531-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki E, Semba R, Seto-Ohshima A, Heizmann CW, Kashiwamata S (1990) Coexistence of parvalbumin and glycine in the rat brainstem. Brain Res 525(1):140–143. doi:10.1016/0006-8993(90)91329-F

    Article  CAS  PubMed  Google Scholar 

  • Auger AP, Tetel MJ, McCarthy MM (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci USA 97(13):7551–7555. doi:10.1073/pnas.97.13.7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa C, Tan ZY, Wang RZ, Xie WR, Strong JA, Patel RR, Vasko MR, Zhang JM, Cummins TR (2015) Navb4 regulates fast resurgent sodium currents and excitability in sensory neurons. Mol Pain. doi:10.1186/s12990-015-0063-9

    PubMed  PubMed Central  Google Scholar 

  • Bass AH, Hopkins CD (1985) Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J Comp Physiol A 156(5):587–604. doi:10.1007/BF00619109

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300. doi:10.2307/2346101

    Google Scholar 

  • Bohne A, Sengstag T, Salzburger W (2014) Comparative transcriptomics in east african cichlids reveals sex- and species-specific expression and new candidates for sex differentiation in fishes. Genome Biol Evol 6(9):2567–2585. doi:10.1093/gbe/evu200

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenowitz EA, Arnold AP (1985) Lack of sexual dimorphism in steroid accumulation in vocal control brain-regions of duetting song birds. Brain Res 344(1):172–175. doi:10.1016/0006-8993(85)91205-3

    Article  CAS  PubMed  Google Scholar 

  • Burns CMB, Rosvall KA, Ketterson ED (2013) Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies. J Evol Biol 26(4):820–831. doi:10.1111/jeb.12094

    Article  Google Scholar 

  • Caetano-Anolles K, Seo M, Rodriguez-Zas S, Oh JD, Han JY, Lee K, Park TS, Shin S, Jiao ZJ, Ghosh M, Jeong DK, Cho S, Kim H, Song KD, Lee HK (2015) Comprehensive identification of sexual dimorphism-associated differentially expressed genes in two-way factorial designed RNA-seq data on japanese quail (Coturnix coturnix japonica). PLoS One 10 (9). doi:10.1371/journal.pone.0139324

  • Canoine V, Fusani L, Schlinger B, Hau M (2007) Low sex steroids, high steroid receptors: Increasing the sensitivity of the nonreproductive brain. Dev Neurobiol 67(1):57–67. doi:10.1002/neu.20296

    Article  CAS  PubMed  Google Scholar 

  • Charlier TD, Ball GF, Balthazart J (2005) Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity. J Neurosci 25(4):906–913. doi:10.1523/Jneurosci.3533-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Vaudry H, Kah O (2011) The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci Switz. doi:10.3389/fnins.2011.00137

    Google Scholar 

  • Dulka JG (1997) Androgen-induced neural plasticity and the regulation of electric-social behavior in the brown ghost knifefish: current status and future directions. 17 (1–6):195–202. doi:10.1023/A:1007778815126

  • Dulka JG, Maler L (1994) Testosterone modulates female chirping behavior in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A 174:331–343. doi:10.1007/BF00240215

    Article  CAS  Google Scholar 

  • Dunlap KD, Ragazzi MA (2015) Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus. Physiol Behav 151:64–71. doi:10.1016/j.physbeh.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. J Comp Physiol A 183:77–86. doi:10.1007/s003590050236

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Smith GT, Yekta A (2000) Temperature dependence of electrocommunication signals and their underlying neural rhythms in the weakly electric fish, Apteronotus leptorhynchus. Brain Behav Evol 55:152–162. doi:10.1159/000006649

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Pelczar PL, Knapp R (2002) Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Horm Behav 42:97–108

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Castellano JF, Prendaj E (2006) Social interaction and cortisol treatment increase cell addition and radial glia fiber density in the diencephalic periventricular zone of adult electric fish, Apteronotus leptorhynchus. Horm Behav 50:10–17

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Silva AC, Smith GT, Zakon HH (2017) Weakly electric fish: behavior, neurobiology, and neuroendocrinology. In: Pfaff DW, Joels M (eds) Hormones, brain, and behavior, vol 2, 3rd edn. Academic Press, New York, pp 69–100

    Chapter  Google Scholar 

  • Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol A 168:521–532. doi:10.1007/BF00215074

    Article  CAS  PubMed  Google Scholar 

  • Elekes K, Szabo T (1985) Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 60:509–520. doi:10.1007/BF00236936

    Article  CAS  PubMed  Google Scholar 

  • Evans NJ, Bayliss AL, Reale V, Evans PD (2016) Characterisation of signalling by the endogenous GPER1 (GPR30) receptor in an embryonic mouse hippocampal cell line (mHippoE-18). PLoS One 11 (3). doi:10.1371/journal.pone.0152138

  • Feng NY, Bass AH (2017) Neural, hormonal, and genetic mechanisms of alternative reproductive tactics. In: Pfaff DW, Joels M (eds) Hormones, brain, and behavior, vol 2, 3rd edn. Academic Press, Oxford, pp 47–65. doi:10.1016/B978-0-12-803592-4.00018-3

    Chapter  Google Scholar 

  • Feng NY, Fergus DJ, Bass AH (2015) Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales. Bmc Genom. doi:10.1186/s12864-015-1577-2

    Google Scholar 

  • Fostier A, Jalabert B, Billard R, Breton B, Zohar Y (1983) The gonadal steroids. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology, vol 9A. Elsevier, New York, pp 277–372

    Google Scholar 

  • Fuxjager MJ, Schuppe ER, Hoang J, Chew J, Shah M, Schlinger BA (2016) Expression of 5a- and 5b-reductase in spinal cord and muscle of birds with different courtship repertoires. Front Zool. doi:10.1186/s12983-016-0156-y

    PubMed  PubMed Central  Google Scholar 

  • Gan L, Kaczmarek LK (1998) When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons. J Neurobiol 37:69–79. doi:10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Gittis AH, Moghadam SH, du Lac S (2010) Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J Neurophysiol 104(3):1625–1634. doi:10.1152/jn.00378.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiligenberg W, Metzner W, Wong CJH, Keller CH (1996) Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neural substrate. J Comp Physiol A 179:653–674. doi:10.1007/BF00216130

    Article  CAS  PubMed  Google Scholar 

  • Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta subunits from rat brain. J Physiol (Lond) 493(3):625–633. doi:10.1113/jphysiol.1996.sp021409

    Article  CAS  Google Scholar 

  • Ho WW, Rack JM, Smith GT (2013) Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electrocommunication behavior. Horm Behav 63(1):49–53. doi:10.1016/j.yhbeh.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann G, Dietzel ID (2004) Thyroid hormone regulates excitability in central neurons from postnatal rats. Neuroscience 125(2):369–379. doi:10.1016/j.neuroscience.2004.01.047

    Article  CAS  PubMed  Google Scholar 

  • Horn AK, Buttner-Ennever JA, Wahle P, Reichenberger I (1994) Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus. J Neurosci 14(4):2032–2046

    CAS  PubMed  Google Scholar 

  • Ignatiadis N, Klaus B, Zaugg JB, Huber W (2016) Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods 13(7):577. doi:10.1038/Nmeth.3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang D, Hogan JO, Kim D (2014) THIK-1 (K2P13.1) is a small-conductance background K+ channel in rat trigeminal ganglion neurons. Pflug Arch Eur J Phy 466(7):1289–1300. doi:10.1007/s00424-013-1358-1

    Article  CAS  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131. doi:10.1002/cne.902760108

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum F (1984) Reproduction of weakly electric teleosts—just another example of convergent development. Environ Biol Fish 10(1–2):3–14

    Article  Google Scholar 

  • Kolodziejski JA, Nelson BS, Smith GT (2005) Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish. J Neurobiol 62:299–315. doi:10.1002/neu.20095

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe M, Nakamura I, Young G (2003) 11 b-Hydroxysteroid dehydrogenase complementary deoxyribonucleic acid in rainbow trout: cloning, sites of expression, and seasonal changes in gonads. Endocrinology 144(6):2534–2545. doi:10.1210/en.2002-220446

    Article  CAS  PubMed  Google Scholar 

  • Labrie F, Luu-The V, Lin SX, Simard J, Labrie C (2000) Role of 17 b-hydroxysteroid dehydrogenases in sex steroid formation in peripheral intracrine tissues. Trends Endocrinol Metab 11(10):421–427. doi:10.1016/S1043-2760(00)00342-8

    Article  CAS  PubMed  Google Scholar 

  • Laing I, Todd AJ, Heizmann CW, Schmidt HH (1994) Subpopulations of GABAergic neurons in laminae I–III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase, or parvalbumin. J Comp Neurol 384(4):580–596. doi:10.1016/0306-4522(94)90065-5

    Google Scholar 

  • Lazaroff MA, Hofmann AD, Ribera AB (1999) Xenopus embryonic spinal neurons express potassium channel Kvb subunits. J Neurosci 19(24):10706–10715

    CAS  PubMed  Google Scholar 

  • Liu H, Wu MM, Zakon HH (2007) Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal. Dev Neurobiol 67(10):1289–1304. doi:10.1002/Dneu.20404

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ (2015) Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ. doi:10.1186/s13293-015-0044-8

    Google Scholar 

  • Lu BX, Su YH, Das S, Liu J, Xia JS, Ren DJ (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129(2):371–383. doi:10.1016/j.cell.2007.02.041

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315. doi:10.1038/nrn2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutas A, Lahmann C, Soumillon M, Yellen G (2016) The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. Elife. doi:10.7554/eLife.15271

    PubMed  PubMed Central  Google Scholar 

  • Maler L, Ellis WG (1987) Inter-male aggressive signals in weakly electric fish are modulated by monoamines. Behav Brain Res 25(1):75–81. doi:10.1016/0166-4328(87)90046-5

    Article  CAS  PubMed  Google Scholar 

  • Manousaki T, Tsakogiannis A, Lagnel J, Sarropoulou E, Xiang JZ, Papandroulakis N, Mylonas CC, Tsigenopoulos CS (2014) The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). Bmc Genom. doi:10.1186/1471-2164-15-655

    Google Scholar 

  • Meyer JH (1983) Steroid influences upon the discharge frequencies of a weakly electric fish. J Comp Physiol A 153:29–37. doi:10.1007/BF00610339

    Article  CAS  Google Scholar 

  • Meyer JH (1984) Steroid influences upon discharge frequencies of intact and isolated pacemakers of weakly electric fish. J Comp Physiol A 154:659–668. doi:10.1007/BF01350219

    Article  CAS  Google Scholar 

  • Meyer JH, Zakon HH (1982) Androgens alter the tuning of electroreceptors. Science 217(4560):635–637. doi:10.1126/science.217.4560.635

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Leong M, Keller CH (1987) Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol A 160:385–394. doi:10.1007/BF00613028

    Article  CAS  PubMed  Google Scholar 

  • Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol A 161:417–430. doi:10.1007/BF00603967

    Article  Google Scholar 

  • Moeller G, Adamski J (2009) Integrated view on 17b-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 301(1–2):7–19. doi:10.1016/j.mce.2008.10.040

    Article  CAS  PubMed  Google Scholar 

  • Moortgat KT, Keller CH, Bullock TH, Sejnowski TJ (1998) Submicrosecond pacemaker precision is behaviorally modulated: the gymnotiform electromotor pathway. Proc Natl Acad Sci USA 95:4684–4689. doi:10.1073/pnas.95.8.4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moortgat KT, Bullock TH, Sejnowski TJ (2000) Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. J Neurophysiol 83(2):971–983. doi:10.1.1.156.2618

    Article  CAS  PubMed  Google Scholar 

  • Norris AJ, Foeger NC, Nerbonne JM (2010) Interdependent roles for accessory KChIP2, KChIP3, and KChIP4 subunits in the generation of Kv4-encoded I-A channels in cortical pyramidal neurons. J Neurosci 30(41):13644–13655. doi:10.1523/Jneurosci.2487-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone R, Batista G, Lorenzo D, Macadar O, Silva A (2010) Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci. doi:10.3389/fnbeh.2010.00052

    PubMed  PubMed Central  Google Scholar 

  • Perrone R, Migliaro A, Comas V, Quintana L, Borde M, Silva A (2014) Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish. J Physiol Paris 108(2–3):203–212. doi:10.1016/j.jphysparis.2014.07.007

    Article  PubMed  Google Scholar 

  • Peterson MP, Rosvall KA, Choi JH, Ziegenfus C, Tang HX, Colbourne JK, Ketterson ED (2013) Testosterone affects neural gene expression differently in male and female juncos: a role for hormones in mediating sexual dimorphism and conflict. PLoS One. doi:10.1371/journal.pone.0061784

    Google Scholar 

  • Petzold JM, Smith GT (2016) Androgens regulate sex differences in signaling but are not associated with male variation in morphology in the weakly electric fish Parapteronotus hasemani. Horm Behav 78:67–71. doi:10.1016/j.yhbeh.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  • Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90(2):755–796. doi:10.1152/physrev.00020.2009

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Curtis R, Lawson D, Gilbride K, Ge P, DiStefano PS, Silos-Santiago I, Catterall WA, Scheuer T (2001) Differential modulation of sodium channel gating and persistent sodium currents by the b1, b2, and b3 subunits. Mol Cell Neurosci 18(5):570–580. doi:10.1006/mcne.2001.1039

    Article  CAS  PubMed  Google Scholar 

  • Remage-Healey L, London SE, Schlinger BA (2010) Birdsong and the neural production of steroids. J Chem Neuroanat 39(2):72–81. doi:10.1016/j.jchemneu.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  • Saldanha CJ, Schlinger BA (2008) Steroidogenesis and neuroplasticity in the songbird brain. In: Ritsner MS, Weizman A (eds) Neuroactive steroids in brain function, behavior, and neuropsychiatric disorders. Springer, New York, pp 201–216

    Chapter  Google Scholar 

  • Sano Y, Mochizuki S, Miyake A, Kitada C, Inamura K, Yokoi H, Nozawa K, Matsushime H, Furuichi K (2002) Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett 512(1–3):230–234. doi:10.1016/S0014-5793(02)02267-6

    Article  CAS  PubMed  Google Scholar 

  • Schaefer JE, Zakon HH (1996) Opposing actions of androgen and estrogen on in vitro firing frequency of neuronal oscillators in the electromotor system. J Neurosci 16(8):2860–2868

    CAS  PubMed  Google Scholar 

  • Schlinger BA, Brenowitz EA (2017) Neural and hormonal control of birdsong. In: Pfaff DW, Joels M (eds) Hormones, brain, and behavior, vol 2, 3rd edn. Academic Press, Oxford, pp 255–282. doi:10.1016/B978-0-12-803592-4.00018-3

    Chapter  Google Scholar 

  • Schumer M, Krishnakant K, Renn SCP (2011) Comparative gene expression profiles for highly similar aggressive phenotypes in male and female cichlid fishes (Julidochromis). J Exp Biol 214(19):3269–3278. doi:10.1242/jeb.055467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengelaub DR, Forger NG (2008) The spinal nucleus of the bulbocavemosus: firsts in androgen-dependent neural sex differences. Horm Behav 53(5):596–612. doi:10.1016/j.yhbeh.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Shaw BK, Kennedy GG (2002) Evidence for species differences in the pattern of androgen receptor distribution in relation to species differences in an androgen-dependent behavior. J Neurobiol 52(3):203–220. doi:10.1002/neu.10079

    Article  CAS  PubMed  Google Scholar 

  • Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. doi:10.1093/bioinformatics/btv351

    Article  CAS  PubMed  Google Scholar 

  • Smith GT (1999) Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish. J Comp Physiol A 185:379–387. doi:10.1007/s003590050398

    Article  CAS  PubMed  Google Scholar 

  • Smith GT (2013) Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). J Exp Biol 216(13):2421–2433. doi:10.1242/Jeb.082933

    Article  PubMed  Google Scholar 

  • Smith GT, Combs N (2008) Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus. Horm Behav 54:69–82. doi:10.1016/j.yhbeh.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Zakon HH (2000) Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish. J Neurobiol 42:270–286. doi:10.1002/(SICI)1097-4695(20000205)42:2<270::AID-NEU10>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Lu Y, Zakon HH (2000) Parvocells: a novel interneuron type in the pacemaker nucleus of a weakly electric fish. J Comp Neurol 423:427–439. doi:10.1002/1096-9861(20000731)423:3<427::AID-CNE6>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  • Smith GT, Unguez GA, Weber CM (2006) Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus. J Neurobiol 66(9):1011–1031. doi:10.1002/neu.20283

    Article  CAS  PubMed  Google Scholar 

  • Stiver KA, Harris RM, Townsend JP, Hofmann HA, Alonzo SH (2015) Neural gene expression profiles and androgen levels underlie alternative reproductive tactics in the ocellated wrasse, Symphodus ocellatus. Ethology 121(2):152–167. doi:10.1111/eth.12324

    Article  Google Scholar 

  • Torres YP, Morera FJ, Carvacho I, Latorre R (2007) A marriage of convenience: b-subunits and voltage-dependent K+ channels. J Biol Chem 282(34):24485–24489. doi:10.1074/jbc.R700022200

    Article  CAS  PubMed  Google Scholar 

  • Voigt C, Goymann W (2007) Sex-role reversal is reflected in the brain of African black coucals (Centropus grillii). Devel Neurobiol 67(12):1560–1573. doi:10.1002/dneu.20528

    Article  Google Scholar 

  • Wade J (2011) Relationships among hormones, brain and motivated behaviors in lizards. Horm Behav 59(5):637–644. doi:10.1016/j.yhbeh.2010.08.014

    Article  CAS  PubMed  Google Scholar 

  • Weld MM, Maler L, Quirion R, Kar S (1991) Sexually dimorphic distribution of substance P and its role in regulation of communication in an electric fish. Abstr Soc Neurosci 17:1407

    Google Scholar 

  • Wong RY, McLeod MM, Godwin J (2014) Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). Bmc Genom. doi:10.1186/1471-2164-15-905

    Google Scholar 

  • Zakon HH, Dunlap KD (1999) Sex steroids and communication signals in electric fish: a tale of two species. Brain Behav Evol 54(1):61–69. doi:10.1159/000006612

    Article  CAS  PubMed  Google Scholar 

  • Zornik E, Kelley DB (2011) A neuroendocrine basis for the hierarchical control of frog courtship vocalizations. Front Neuroendocrinol 32(3):353–366. doi:10.1016/j.yfrne.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  • Zucker MS (1998) Hormonal basis of sexual dimorphism and steroid sensitivity of electric organ discharge frequency of the gymnotiform fish, Apteronotus leptorhynchus. Doctoral Dissertation, University of Texas, Austin, TX

  • Zupanc GKH, Maler L (1997) Neuronal control of behavioral plasticity: the prepacemaker nucleus of weakly electric gymnotiform fish. J Comp Physiol A 180:99–111. doi:10.1007/s003590050031

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jie Huang and James Ford at the Indiana University Center for Genomics and Bioinformatics for constructing and sequencing libraries, and the Indiana University Center for the Integrative Study of Animal Behavior (CISAB) Mechanisms of Behavior Core Laboratory for the use of facilities to isolate RNA from samples. Supported by NSF IOS 0950721 to GTS and NIH T32049336 to ARS. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc. Animal care and experimental procedures were in conducted in accordance with ethical standards in the NIH Guide and by using protocols approved by the Bloomington Institutional Animal Care and Use Committee at Indiana University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Troy Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 837 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.T., Proffitt, M.R., Smith, A.R. et al. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J Comp Physiol A 204, 93–112 (2018). https://doi.org/10.1007/s00359-017-1223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1223-3

Keywords

Navigation