Skip to main content

Hormonal Influences on Social Behavior in South American Weakly Electric Fishes

  • Chapter
  • First Online:
Electroreception: Fundamental Insights from Comparative Approaches

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 70))

Abstract

This chapter highlights the contributions of four iconic Gymnotiform model species to the understanding of the neuroendocrine control of social behavior. In weakly electric fish, social behavior includes electric signaling in addition to locomotor displays. The central circuitry commanding the electric organ discharge (EOD) is well-known, and thus electrocommunication displays can be easily linked to the structures responsible for their modulation. Sexually dimorphic frequency (central) and waveform (peripheral) modulations are reviewed. In Sternopygus macrurus, androgens decrease the EOD frequency and broaden the pulse duration, whereas estrogens induce opposite effects. Long-term steroid hormone effects, acting directly on the ion-channel kinetic properties of electrocytes, combine with short-term peptide EOD waveform modulations to adapt electric signaling to environmental and social demands. Closely related species of the family Apteronotidae exhibit diverse sexual dimorphisms in EOD frequency, indicating that the actions of steroids may change their valence and sensitivity across species. The electric signal plasticity of Brachyhypopomus gauderio in response to seasonal, daily, and social changes of the environment is outstanding. The interplay of steroids and peptidergic hormones explain long- and short-term modulation of EOD amplitude, duration, and rate. In Gymnotus omarorum, gonadal-independent hormonal mechanisms are involved in the regulation of territorial aggression and in the emergence of the dominant subordinate status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins-Regan E (2005) Hormones and animal social behavior. Princeton University Press, Princeton

    Google Scholar 

  • Allee SJ, Markham MR, Stoddard PK (2009) Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus. Horm Behav 56:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista G, Zubizarreta L, Perrone R, Silva A (2012) Non-sex-biased dominance in a sexually monomorphic electric fish: fight structure and submissive electric signalling. Ethology 118:398–410

    Article  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, London, pp 347–491

    Google Scholar 

  • Black-Cleworth P (1970) The role of electrical discharges in the non-reproductive social behaviour of Gymnotus carapo. Anim Behav Monogr 3:1–77

    Article  Google Scholar 

  • Brown JI (1975) The evolution of behavior. Norton, New York

    Google Scholar 

  • Caldwell GS, Glickman SE, Smith ER (1984) Seasonal aggression independent of seasonal testosterone in wood rats. Proc Natl Acad Sci 81(16):5255–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputi AA, Silva A, Macadar O (1998) The EOD of Brachyhypopomus pinnicaudatus: the effect of environmental variables on waveform generation. Brain Behav Evol 52:148–158

    Article  CAS  PubMed  Google Scholar 

  • Caputi AA, Carlson B, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Popper AN, Fay R (eds) Electroreception. Springer, New York, pp 410–451

    Chapter  Google Scholar 

  • Curtis CC, Stoddard PK (2003) Mate preference in female electric fish, Brachyhypopomus pinnicaudatus. Anim Behav 66:329–336

    Article  Google Scholar 

  • Dulka JG, Maler L (1994) Testosterone modulates female chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 174:331–343

    Article  CAS  Google Scholar 

  • Dunlap KD (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, McAnelly LM, Zakon HH (1997) Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus. J Neurosci 17:2869–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap KD, Thomas P, Zakon HH (1998) Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus. J Comp Physiol A 183:77–86

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KD, Silva A, Smith GT, Zakon HH (2017) Weakly electric fish: behavior, neurobiology, and neuroendocrinology. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, 3rd edn. Academic, Oxford, pp 69–98

    Chapter  Google Scholar 

  • Dye J (1987) Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus. J Comp Physiol A 163:175–185

    Article  Google Scholar 

  • Engler E, Fogarty C, Banks J, Zupanc G (2000) Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis. J Comp Physiol A 186:645–660

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MB, McAnelly LM, Zakon HH (1995) Individual variation in and androgen-modulation of the sodium current in electric organ. J Neurosci 15:4023–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris C (1992) Role of vasopressin in aggressive and dominant/subordinate behaviors. Ann N Y Acad Sci 652:212–226

    Article  CAS  PubMed  Google Scholar 

  • Few WP, Zakon HH (2001) Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency. Horm Behav 40:434–442

    Article  CAS  PubMed  Google Scholar 

  • Few WP, Zakon HH (2007) Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal. Dev Neurobiol 67:535–549

    Article  CAS  PubMed  Google Scholar 

  • Franchina CR, Stoddard PK (1998) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. I. Quantification of day-night changes. J Comp Physiol A 183:759–768

    Article  CAS  PubMed  Google Scholar 

  • Franchina CR, Salazar VL, Volmar CH, Stoddard PK (2001) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. II Social effects. J Comp Physiol A 173:281–292

    Google Scholar 

  • Gavassa S, Silva AC, Stoddard PK (2011) Tight hormonal phenotypic integration ensures honesty of the electric signal of male and female Brachyhypopomus gauderio. Horm Behav 60:420–426

    Article  CAS  PubMed  Google Scholar 

  • Gavassa S, Silva AC, Gonzalez E, Stoddard PK (2012) Signal modulation as a mechanism for handicap disposal. Anm Behav 83:935–944

    Article  Google Scholar 

  • Goldina A, Gavassa S, Stoddard PK (2011) Testosterone and 11- ketotestosterone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio. Horm Behav 60:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson JL, Bass AH (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev 35:246–265

    Article  CAS  PubMed  Google Scholar 

  • Greenwood AK, Wark AR, Fernald RD, Hofmann HA (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. ProcR Soc B Biol Sci 275:2393–2402

    Article  Google Scholar 

  • Heimovics SA, Trainor BC, Soma KK (2015) Rapid effects of estradiol on aggression in birds and mice: the fast and the furious. Int Comp Biol 55(2):281–293

    Article  CAS  Google Scholar 

  • Ho WW, Rack JM, Smith GT (2013) Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electro- communication behavior. Horm Behav 63:49–53

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 23:55–60

    Google Scholar 

  • Hopkins CD (1974) Electric communication in the reproductive behavior of Sternopygus macrurus (Gymnotoidei). Zeitschrift Fur Tierpsychologie 35:518–535

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav Evol 35:350–367

    Article  CAS  PubMed  Google Scholar 

  • Huffman LS, Hinz FI, Wojcik S, Aubin-Horth N, Hofmann HA (2015) Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. Gen Comp Endocrinol 212:106–113

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Young LJ (2000) Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 10:784–789

    Article  CAS  PubMed  Google Scholar 

  • Jalabert C, Quintana L, Pessina P, Silva A (2015) Extra-gonadal steroids modulate non-breeding territorial aggression in weakly electric fish. Horm Behav 72:60–67

    Article  CAS  PubMed  Google Scholar 

  • Johnson ZV, Young LJ (2017) Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev 76:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. J Neurosci 10:3896–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy G, Heiligenberg W (1994) Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus. J Comp Physiol A 174:267–280

    Article  CAS  PubMed  Google Scholar 

  • King JA (1973) The ecology of aggressive behavior. Annu Rev Ecol Syst 4:117–138

    Article  Google Scholar 

  • Kirschbaum F (1995) Taxonomy, zoogeography and general ecology of south American knifefishes (Gymnotiformes). In: Moller P (ed) Electric fishes. History and behavior. Chapman & Hall, London, pp 446–464

    Google Scholar 

  • Liu H, Wu M, Zakon HH (2007) Individual variation and hormonal modulation of a sodium channel b subunit in the electric organ correlate with variation in a social signal. Dev Neurobiol 67:1289–1304

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wu M, Zakon HH (2008) A novel Na+ channel splice form contributes to the electric fish regulation of an androgen-dependent social signal. J Neurosci 28:9173–9182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham MR (2013) Electrocyte physiology: 50 years later. J Exp Biol 216:2451–2458

    Article  PubMed  Google Scholar 

  • Markham MR, Stoddard PK (2005) Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells. J Neurosci 25:8746–8754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markham MR, McAnelly LM, Stoddard PK, Zakon HH (2009a) Circadian and social cues regulate ion channel trafficking. PLoS Biol 7:e1000203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markham MR, Allee SJ, Goldina A, Stoddard PK (2009b) Melanocortins regulate the electric waveforms of gymnotiform electric fish. Horm Behav 55:306–313

    Article  CAS  PubMed  Google Scholar 

  • McAnelly LM, Zakon HH (2007) Androgen modulates the kinetics of the delayed rectifying K current in the electric organ of a weakly electric fish. Dev Neurobiol 67:1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Meyer JH, Leong M, Keller CH (1987) Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol A 160:385–394

    Article  CAS  PubMed  Google Scholar 

  • Migliaro A, Silva A (2016) Melatonin regulates daily variations in electric behavior arousal in two species of weakly electric fish with different social structures. Brain Behav Evol 87(4):232–241

    Article  PubMed  Google Scholar 

  • Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol A 161:417–430

    Article  Google Scholar 

  • Mills A, Zakon HH (1991) Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus. J Neurosci 11:2349–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills A, Zakon HH, Marchaterre M, Bass AH (1992) Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD. J Neurobiol 23:920–932

    Article  CAS  PubMed  Google Scholar 

  • Newman SW (1999) The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 877:242–257

    Article  CAS  PubMed  Google Scholar 

  • OʼConnell LA, Hofmann HA (2011) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519:3599–3639

    Article  PubMed  Google Scholar 

  • Perrone R, Silva A (2018) Status-dependent vasotocin modulation of dominance and subordination in the weakly electric fish Gymnotus omarorum differences. Front Behav Neurosci 12:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrone R, Macadar O, Silva A (2009) Social electric signals in freely moving dyads of Brachyhypopomus pinnicaudatus. J Comp Physiol A 195:501–514

    Article  Google Scholar 

  • Perrone R, Batista G, Lorenzo D, Macadar O, Silva A (2010) Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci 4(52)

    Google Scholar 

  • Perrone R, Pedraja F, Valiño G, Tassino B, Silva A (2019) Non-breeding territoriality and the effect of territory size on aggression in the weakly electric fish, Gymnotus omarorum. Acta Ethol 22:79–89

    Article  Google Scholar 

  • Pouso P, Quintana L, Bolatto C, Silva AC (2010) Brain androgen receptor expression correlates with seasonal changes in the behavior of a weakly electric fish, Brachyhypopomus gauderio. Horm Behav 58:729–736

    Article  CAS  PubMed  Google Scholar 

  • Pouso P, Radmilovich M, Silva A (2017) An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio. Tissue Cell 49:257–269

    Article  CAS  PubMed  Google Scholar 

  • Quintana L, Silva A, Berois N, Macadar O (2004) Temperature induces gonadal maturation and affects electrophysiological sexual maturity indicators in Brachyhypopomus pinnicaudatus from a temperate climate. J Exp Biol 207:1843–1853

    Article  PubMed  Google Scholar 

  • Quintana L, Pouso P, Fabbiani G, Macadar O (2011a) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects. J Comp Physiol A 197:75–88

    Article  Google Scholar 

  • Quintana L, Sierra F, Silva A, Macadar O (2011b) A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A 197:211–225

    Article  Google Scholar 

  • Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D (2014) Sex-specific role of aglutamate receptor subtype in a pacemaker nucleus controlling electric behavior. J Physiol Paris 108(2–3):155–166

    Article  PubMed  Google Scholar 

  • Quintana L, Zubizarreta L, Jalabert C, Batista G, Perrone R, Silva A (2016) Building the case for a novel teleost model of non-breeding aggression and its neuroendocrine control. J Physiol Paris 110:224–232

    Article  PubMed  Google Scholar 

  • Semsar K, Kandel FL, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav 40:21–31

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Pandolfi M (2018) Vasotocinergic systems in Neotropical fish: from neuroanatomy to agonistic behavior. Gen Comp Endocr 273:67–72

    Google Scholar 

  • Silva AC, Quintana L, Galeano M, Errandonea P, Macadar O (1999) Water temperature sensitivity of EOD waveform in Brachyhypopomus pinnicaudatus. J Comp Physiol A 185:187–197

    Article  Google Scholar 

  • Silva A, Quintana L, Ardanaz JL, Macadar O (2002) Environmental and hormonal influences upon EOD wave form in gymnotiform pulse fish. J Physiol Paris 96:473–484

    Article  CAS  PubMed  Google Scholar 

  • Silva AC, Quintana L, Galeano M, Errandonea P (2003) Biogeography and breeding in Gymnotiformes from Uruguay. Environ Biol Fish 66:329–338

    Article  Google Scholar 

  • Silva A, Perrone R, Macadar O (2007) Environmental, seasonal, and social modulations of basal activity in a weakly electric fish. Physiol Behav 90:525–536

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Quintana L, Perrone R, Sierra F (2008) Sexual and seasonal plasticity in the emission of social electric signals. Behavioral approach and neural bases. J Physiol Paris 102:272–278

    Article  PubMed  Google Scholar 

  • Smith GT (2013) Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae). J Exp Biol 216:2421–2433

    Article  PubMed  Google Scholar 

  • Spiro JE (1997) Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J Neurophysiol 78:835–847

    Article  CAS  PubMed  Google Scholar 

  • Stoddard PK, Markham MR, Salazar VL, Allee S (2007) Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 90:11–20

    Article  CAS  PubMed  Google Scholar 

  • Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT (2007) Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). J Exp Biol 210:4104–4122

    Article  PubMed  Google Scholar 

  • Wingfield JC (1994) Regulation of territorial behavior in the sedentary song sparrow, Melospiza melodia morphna. Horm Behav 28(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC (2005) A continuing saga: the role of testosterone in aggression. Horm Behav 48:253–255

    Article  PubMed  Google Scholar 

  • Zakon HH (2000) Sex steroids and weakly electric fish: a model system for activational mechanisms of hormone action. In: Matsumoto A (ed) Sexual differentiation of the brain. CRC Press, Boca Raton, pp 95–112

    Google Scholar 

  • Zakon HH, Dunlap K (1999) Sex steroids and communication signals in electric fish electric fish: a tale of two species. Brain Behav Evol 54:61–69

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH, Yan HY, Thomas P (1990) Human chorionic gonadotropin-induced shifts in the electrosensory system of the weakly electric fish, Sternopygus. J Neurobiol 21:826–833

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH, Thomas P, Yan HY (1991) Electric organ discharge frequency and plasma sex steroid levels during gonadal recrudescence in a natural population of the weakly electric fish Sternopygus macrurus. J Comp Physiol A 169:493–499

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH, Oestreich J, Tallarovic S, Triefenbach F (2002) EOD modulations of controlling brown ghost electric fish: JARs, chirps, rises, and dips. J Physiol Paris 96:451–458

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proc Natl Acad Sci 103:3675–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubizarreta L, Perrone R, Stoddard PK, Costa G, Silva AC (2012) Differential serotonergic modulation of two types of aggression in weakly electric fish. Front Behav Neurosci 6:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A preliminary version of this chapter was reviewed and edited by Kent Dunlap and Laura Quintana. The figures have been organized with the help of Laura Nozar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Silva .

Editor information

Editors and Affiliations

Ethics declarations

Ana C. Silva declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, A.C. (2019). Hormonal Influences on Social Behavior in South American Weakly Electric Fishes. In: Carlson, B., Sisneros, J., Popper, A., Fay, R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-29105-1_6

Download citation

Publish with us

Policies and ethics