Skip to main content

TRP Channels and Neural Persistent Activity

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Abstract

One of the integrative properties of the nervous system is its capability to, by transient motor commands or brief sensory stimuli, evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. This neural activity, named persistent activity, is found in a good number of brain regions and is thought to be a neural substrate for short-term storage and accumulation of sensory or motor information [1]. Examples of this persistent neural activity have been reported in prefrontal [2] and entorhinal [3] cortices, as part of the neural mechanisms involved in short-term working memory [4]. Interestingly, the general organization of the motor systems assumes the presence of bursts of short-lasting motor commands encoding movement characteristics such as velocity, duration, and amplitude, followed by a maintained tonic firing encoding the position at which the moving appendage should be maintained [5, 6]. Generation of qualitatively similar sustained discharges have also been found in spinal and supraspinal regions in relation to pain processing [7, 8]. Thus, persistent neural activity seems to be necessary for both behavioral (positions of fixation) and cognitive (working memory) processes. Persistent firing mechanisms have been proposed to involve the participation of a non-specific cationic current (CAN current) mainly mediated by activation of TRPC channels. Because the function and generation of persistent activity is still poorly understood, here we aimed to review and discuss the putative role of TRP-like channels on its generation and/or maintenance.

An erratum to this chapter can be found athttp://dx.doi.org/10.1007/978-94-007-0265-3_53

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Major G, Tank D (2004) Persistent neural activity: prevalence and mechanisms. Curr Opin Neurobiol 14:675–684

    CAS  PubMed  Google Scholar 

  2. Fuster JM (1997) Network memory. Trends Neurosci 20:451–459

    CAS  PubMed  Google Scholar 

  3. Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–178

    CAS  PubMed  Google Scholar 

  4. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    CAS  PubMed  Google Scholar 

  5. Moschovakis A (1997) The neural integrators of the mammalian saccadic system. Front Biosci 15:552–577

    Google Scholar 

  6. Robinson DA (1981) The use of control systems analysis in the neurophysiology of eye movements. Annu Rev Neurosci 4:463–503

    CAS  PubMed  Google Scholar 

  7. Derjean D, Bertrand S, Le Masson G, Landry M, Morisset V, Nagy F (2003) Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6:274–281

    CAS  PubMed  Google Scholar 

  8. Zhang Z, Seguela P Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex. Cereb Cortex doi:10.1093/cercor/bhq1043 2010

    Google Scholar 

  9. Suzuki WA, Miller EK, Desimone R (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081

    CAS  PubMed  Google Scholar 

  10. Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    CAS  PubMed  Google Scholar 

  11. Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Otto T, Eichenbaum H (1992) Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for hippocampal processing in recognition memory. Hippocampus 2:323–334

    CAS  PubMed  Google Scholar 

  13. Brody CD, Hernandez A, Zainos A, Romo R (2003) Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex 13:1196–1207

    PubMed  Google Scholar 

  14. Krnjevic K, Pumain R, Renaud L (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol (Lond) 215:247–268

    CAS  Google Scholar 

  15. Andrade R (1991) Cell excitation enhances muscarinic cholinergic responses in rat association cortex. Brain Res 548:81–93

    CAS  PubMed  Google Scholar 

  16. Klink R, Alonso A (1997) Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol 77:1813–1828

    CAS  PubMed  Google Scholar 

  17. Egorov AV, Unsicker K (2006) von Bohlen und Halbach O: muscarinic control of graded persistent activity in lateral amygdala neurons. Eur J Neurosci 24:3183–3194

    PubMed  Google Scholar 

  18. Tahvildari B, Fransén E, Alonso AA, Hasselmo ME (2007) Switching between “On” and “Off” states of persistent activity in lateral entorhinal layer III neurons. Hippocampus 17:257–263

    PubMed  Google Scholar 

  19. Fraser DD, MacVicar BA (1996) Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 16:4113–4128

    CAS  PubMed  Google Scholar 

  20. Hasselmo ME, Brandon MP (2008) Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Neural Plast 2008:12

    Google Scholar 

  21. Schon K, Hasselmo ME, LoPresti ML, Tricarico MD, Stern CE (2004) Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: a functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. J Neurosci 24:11088–11097

    CAS  PubMed  Google Scholar 

  22. Esclassan F, Coutureau E, Di Scala G, Marchand AR (2009) A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning. J Neurosci 29:8087–8093

    CAS  PubMed  Google Scholar 

  23. Bang SJ, Brown TH (2009) Muscarinic receptors in perirhinal cortex control trace conditioning. J Neurosci 29:4346–4350

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    CAS  PubMed  Google Scholar 

  25. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  Google Scholar 

  26. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser M-B, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762

    CAS  PubMed  Google Scholar 

  27. Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18:1213–1229

    PubMed Central  PubMed  Google Scholar 

  28. Hasselmo ME, Brandon MP, Yoshida M, Giocomo LM, Heys JG, Fransen E, Newman EL, Zilli EA (2009) A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Network 22:1129–1138

    Google Scholar 

  29. Yoshida M, Hasselmo ME (2009) Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system. J Neurosci 29:4945–4952

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Batchelor AM, Garthwaite J (1997) Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385:74–77

    CAS  PubMed  Google Scholar 

  31. Tempia F, Miniaci MC, Anchisi D, Strata P (1998) Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar purkinje cells. J Neurophysiol 80:520–528

    CAS  PubMed  Google Scholar 

  32. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291

    CAS  PubMed  Google Scholar 

  33. Delgado-García JM, Yajeya J, Navarro-López JD (2006) A cholinergic mechanism underlies persistent neural activity necessary for eye fixation. Prog Brain Res 154: 211–224, Elsevier

    PubMed  Google Scholar 

  34. Di Prisco GV, Pearlstein E, Le Ray D, Robitaille R, Dubuc R (2000) A cellular mechanism for the transformation of a sensory input into a motor command. J Neurosci 20:8169–8176

    CAS  PubMed  Google Scholar 

  35. Marder E (2003) Plateau properties in pain pathways. Nat Neurosci 6:210–212

    CAS  PubMed  Google Scholar 

  36. Aksay E, Baker R, Seung HS, Tank DW (2003) Correlated discharge among cell pairs within the oculomotor horizontal velocity-to-position integrator. J Neurosci 23:10852–10858

    CAS  PubMed  Google Scholar 

  37. Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW (2001) In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 4:184–193

    CAS  PubMed  Google Scholar 

  38. Navarro-Lopez JD, Alvarado JC, Marquez-Ruiz J, Escudero M, Delgado-Garcia JM, Yajeya J (2004) A cholinergic synaptically triggered event participates in the generation of persistent activity necessary for eye fixation. J Neurosci 24:5109–5118

    CAS  Google Scholar 

  39. Navarro-Lopez JD, Delgado-Garcia JM, Yajeya J (2005) Cooperative glutamatergic and cholinergic mechanisms generate short-term modifications of synaptic effectiveness in prepositus hypoglossi neurons. J Neurosci 25:9902–9906

    Google Scholar 

  40. Reboreda A, Raouf R, Alonso A, Seguela P (2007) Development of cholinergic modulation and graded persistent activity in layer V of medial entorhinal cortex. J Neurophysiol 97:3937–3947

    CAS  PubMed  Google Scholar 

  41. Russo MJ, Mugnaini E, Martina M (2007) Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells. J Physiol 581:709–724

    PubMed Central  PubMed  Google Scholar 

  42. Zhang Z, Reboreda A, Alonso A, Barker PA, Séguéla P (2010) TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. Hippocampus, n/a. doi:10.1002/hipo.20755

    Google Scholar 

  43. Haj-Dahmane S, Andrade R (1998) Ionic mechanism of the slow afterdepolarization induced by Muscarinic receptor activation in rat prefrontal cortex. J Neurophysiol 80:1197–1210

    CAS  PubMed  Google Scholar 

  44. Sidiropoulou K, Lu F-M, Fowler MA, Xiao R, Phillips C, Ozkan ED, Zhu MX, White FJ, Cooper DC (2009) Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nat Neurosci 12:190–199

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Yoshida M, Fransén E, Hasselmo ME (2008) mGluR-dependent persistent firing in entorhinal cortex layer III neurons. Eur J Neurosci 28:1116–1126

    PubMed Central  PubMed  Google Scholar 

  46. Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221:1299–1301

    CAS  PubMed  Google Scholar 

  47. Gee CE, Benquet P, Gerber U (2003) Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. J Physiol 546:655–664

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kawasaki H, Palmieri C, Avoli M (1999) Muscarinic receptor activation induces depolarizing plateau potentials in bursting neurons of the rat subiculum. J Neurophysiol 82:2590–2601

    CAS  PubMed  Google Scholar 

  49. Klink R, Alonso A (1997) Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. J Neurophysiol 77:1829–1843

    CAS  PubMed  Google Scholar 

  50. Yoshida M, Alonso A (2007) Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex. J Neurophysiol 98:2779–2794

    CAS  PubMed  Google Scholar 

  51. Cantrell AR, Ma JY, Scheuer T, Catterall WA (1996) Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16:1019–1026

    CAS  PubMed  Google Scholar 

  52. Kuzmiski JB, MacVicar BA (2001) Cyclic nucleotide-gated channels contribute to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 21:8707–8714

    CAS  PubMed  Google Scholar 

  53. Egorov AV, Angelova PR, Heinemann U, Müller W (2003) Ca2+-independent muscarinic excitation of rat medial entorhinal cortex layer V neurons. Eur J Neurosci 18:3343–3351

    PubMed  Google Scholar 

  54. Haj-Dahmane S, Andrade R (1999) Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. Eur J Neurosci 11:1973–1980

    CAS  PubMed  Google Scholar 

  55. Tahvildari B, Alonso AA, Bourque CW (2008) Ionic basis of ON and OFF persistent activity in layer III lateral entorhinal cortical principal neurons. J Neurophysiol 99:2006–2011

    PubMed  Google Scholar 

  56. Tai C, Kuzmiski JB, MacVicar BA (2006) Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci 26:6249–6258

    CAS  PubMed  Google Scholar 

  57. Zhang L, Han D, Carlen PL (1996) Temporal specificity of muscarinic synaptic modulation of the Ca(2+)-dependent K+ current (ISAHP) in rat hippocampal neurones. J Physiol 496:395–405

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBÃtzinger complex. J Physiol 582:1047–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC (2007) Corticolimbic expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS One 2:e573

    PubMed Central  PubMed  Google Scholar 

  60. von Bohlen und Halbach O, Hinz U, Unsicker K, Egorov A (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206

    CAS  Google Scholar 

  61. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Parikh V, Sarter M (2008) Cholinergic mediation of attention. Contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann NY Acad Sci 1129:225–235

    CAS  PubMed  Google Scholar 

  63. Schon K, Atri A, Hasselmo ME, Tricarico MD, LoPresti ML, Stern CE (2005) Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J Neurosci 25:9112–9123

    CAS  PubMed  Google Scholar 

  64. McGaughy J, Koene RA, Eichenbaum H, Hasselmo ME (2005) Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. J Neurosci 25:10273–10281

    CAS  PubMed  Google Scholar 

  65. Chudasama Y, Dalley JW, Nathwani F, Bouger P, Robbins TW (2004) Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. Learn Mem 11:78–86

    PubMed Central  PubMed  Google Scholar 

  66. Yan H-D, Villalobos C, Andrade R (2009) TRPC Channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29:10038–10046

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Congar P, Leinekugel X, Ben-Ari Y, Crepel V (1997) A Long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 17:5366–5379

    CAS  PubMed  Google Scholar 

  68. Wyart C, Cocco S, Bourdieu L, Leger J-F, Herr C, Chatenay D (2005) Dynamics of excitatory synaptic components in sustained firing at low rates. J Neurophysiol 93:3370–3380

    PubMed  Google Scholar 

  69. Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE, The Group I (2002) Metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 22:5219–5229

    CAS  PubMed  Google Scholar 

  70. Balschun D, Zuschratter W, Wetzel W (2006) Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 142:691–702

    CAS  PubMed  Google Scholar 

  71. Naie K, Manahan-Vaughan D (2004) Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. Cereb Cortex 14:189–198

    PubMed  Google Scholar 

  72. Gregory ML, Stech NE, Owens RW, Kalivas PW (2003) Prefrontal group II metabotropic glutamate receptor activation decreases performance on a working memory task. Ann N Y Acad Sci 1003:405–409

    CAS  PubMed  Google Scholar 

  73. Winograd M, Destexhe A, Sanchez-Vives MV (2008) Hyperpolarization-activated graded persistent activity in the prefrontal cortex. Proc Natl Acad Sci USA 105:7298–7303

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Ambudkar I, Ong H (2007) Organization and function of TRPC channelosomes. Pflügers Arch Eur J Physiol 455:187–200

    CAS  Google Scholar 

  75. Kiselyov K, Shin DM, Kim JY, Yuan JP, Muallem S (2007) TRPC channels: Interacting Proteins. Handbook of Experimental Pharmacology, Vol. 179, Part VI, 559–574, doi: 10.1007/978-3-540-34891-7_33

    Google Scholar 

  76. Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Gαq-coupled protein receptors. J Biol Chem 279:34614–34623

    CAS  PubMed  Google Scholar 

  77. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Heuss C, Gerber U (2000) G-protein-independent signaling by G-protein-coupled receptors. Trends Neurosci 23:469–475

    CAS  PubMed  Google Scholar 

  79. Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci USA 103:335–340

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Vazquez G, Wedel BJ, Kawasaki BT, Bird GSJ, Putney JW (2004) Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 279:40521–40528

    CAS  PubMed  Google Scholar 

  81. Odell AF, Scott JL, Van Helden DF (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987

    CAS  PubMed  Google Scholar 

  82. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    CAS  PubMed  Google Scholar 

  83. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX (2000) Association of mammalian Trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 275:37559–37564

    CAS  PubMed  Google Scholar 

  84. Obukhov AG, Nowycky MC (2004) TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol 201:227–235

    CAS  PubMed  Google Scholar 

  85. McOmish CE, Burrows EL, Howard M, Hannan AJ (2008) PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18:824–834

    CAS  PubMed  Google Scholar 

  86. Otsuguro K-i, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Trebak M, Lemonnier L, DeHaven W, Wedel B, Bird G, Putney J (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflügers Arch Eur J Physiol 457:757–769

    CAS  Google Scholar 

  88. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rüetten H, Strubing C (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 285(16):12426–12434

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43:506–514

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA 98:3168–3173

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Shimizu S, Yoshida T, Wakamori M, Ishii M, Okada T, Takahashi M, Seto M, Sakurada K, Kiuchi Y, Mori Y (2006) Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J Physiol 570:219–235

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Sung T, Kim M, Hong S, Jeon J-P, Kim B, Jeon J-H, Kim S, So I (2009) Functional characteristics of TRPC4 channels expressed in HEK 293 cells. Mol Cells 27:167–173

    CAS  PubMed  Google Scholar 

  95. Kinoshita-Kawada M, Tang J, Xiao R, Kaneko S, Foskett JK, Zhu MX (2005) Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflügers Arch Eur J Physiol 450:345–354

    CAS  Google Scholar 

  96. Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalié A (2009) TRPC5 Is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 284:34423–34432

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49:735–746

    PubMed  Google Scholar 

  98. Partridge LD, Valenzuela CF (1999) Ca2+ store-dependent potentiation of Ca2+-activated non-selective cation channels in rat hippocampal neurones in vitro. J Physiol 521:617–627

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci USA 96:14955–14960

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Stamboulian S, Moutin M-J, Treves S, Pochon N, Grunwald D, Zorzato F, De Waard M, Ronjat M, Arnoult C (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    CAS  PubMed  Google Scholar 

  101. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    CAS  PubMed  Google Scholar 

  102. Magistretti J, Ma L, Shalinsky MH, Lin W, Klink R, Alonso A (2004) Spike patterning by Ca2+-dependent regulation of a muscarinic cation current in entorhinal cortex layer II neurons. J Neurophysiol 92:1644–1657

    CAS  PubMed  Google Scholar 

  103. Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 133:525–546

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Zhu M (2005) Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflügers Arch Eur J Physiol 451:105–115

    CAS  Google Scholar 

  105. Ambudkar IS (2006) Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels. Trends Pharmacol Sci 27:25–32

    CAS  PubMed  Google Scholar 

  106. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    CAS  PubMed  Google Scholar 

  107. Hardie RC (2007) TRP channels and lipids: from drosophila to mammalian physiology. J Physiol 578:9–24

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    CAS  PubMed  Google Scholar 

  109. Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, Gobeske KT, Sweatt JD, Manji HK, Arnsten AFT, Protein Kinase C (2004) Overactivity impairs prefrontal cortical regulation of working memory. Science 306:882–884

    CAS  PubMed  Google Scholar 

  110. Partridge LD, Valenzuela CF (2000) Block of hippocampal CAN channels by flufenamate. Brain Res 867:143–148

    CAS  PubMed  Google Scholar 

  111. Wang D, Grillner S, Wallén P (2006) Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Neuropharmacology 51:1038–1046

    CAS  PubMed  Google Scholar 

  112. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular {{alpha}}1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332

    CAS  PubMed  Google Scholar 

  113. Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Receptors Channels 7:429–439

    CAS  PubMed  Google Scholar 

  114. Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh SAM BK, Moores KE, Rink TJ (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271:515–522

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Lievremont J-P, Bird GS, Putney JW (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762

    CAS  PubMed  Google Scholar 

  116. Shang-Zhong X, Fanning Z, Guylain B, Christian G, Christian H, David JB (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145:405–414

    Google Scholar 

  117. Poburko D, Lhote P, Szado T, Behra T, Rahimian R, McManus B, van Breemen C, Ruegg UT (2004) Basal calcium entry in vascular smooth muscle. Eur J Pharmacol 505:19–29

    CAS  PubMed  Google Scholar 

  118. Chung M-K, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182

    CAS  PubMed  Google Scholar 

  119. Wang Y, Deshpande M, Payne R (2002) 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in limulus ventral photoreceptors. Cell Calcium 32:209–216

    CAS  PubMed  Google Scholar 

  120. Harks EGA, Camina JP, Peters PHJ, Ypey DL, Scheenen WJJM, van Zoelen EJJ, Theuvenet APR (2003) Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing the measurement of single-cell membrane currents in undissociated cells. FASEB J 17(8):941–943

    CAS  PubMed  Google Scholar 

  121. Faber ESL, Sedlak P, Vidovic M, Sah P (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137:781–794

    CAS  PubMed  Google Scholar 

  122. Haj-Dahmane S, Andrade R (1996) Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. J Neurosci 16:3848–3861

    CAS  PubMed  Google Scholar 

  123. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    PubMed  Google Scholar 

  124. Cobb SR, Davies CH (2005) Cholinergic modulation of hippocampal cells and circuits. J Physiol 562:81–88

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Martín ED, Ceña V, Pozo MA (2005) Cholinergic modulation of status epilepticus in the rat barrel field region of primary somatosensory cortex. Exp Neurol 196:120–125

    PubMed  Google Scholar 

  126. Nagao T, Alonso A, Avoli M (1996) Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation. Neuroscience 72:399–408

    CAS  PubMed  Google Scholar 

  127. Sayin U, Rutecki PA (2003) Group I metabotropic glutamate receptor activation produces prolonged epileptiform neuronal synchronization and alters evoked population responses in the hippocampus. Epilepsy Res 53:186–195

    CAS  PubMed  Google Scholar 

  128. Zhao W, Bianchi R, Wang M, Wong RKS (2004) Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. J Neurosci 24:76–84

    CAS  PubMed  Google Scholar 

  129. Schiller Y (2004) Activation of a calcium-activated cation current during epileptiform discharges and its possible role in sustaining seizure-like events in neocortical slices. J Neurophysiol 92:862–872

    CAS  PubMed  Google Scholar 

  130. Wang M, Bianchi R, Chuang S-C, Zhao W, Wong RKS (2007) Group I metabotropic glutamate receptor-dependent TRPC channel trafficking in hippocampal neurons. J Neurochem 101:411–421

    CAS  PubMed  Google Scholar 

  131. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8:55–68

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Russo RE, Nagy F, Hounsgaard J (1998) Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro. J Physiol 506:795–808

    PubMed Central  CAS  PubMed  Google Scholar 

  133. You H-J, Mørch CD, Chen J, Arendt-Nielsen L (2003) Role of central NMDA versus non-NMDA receptor in spinal withdrawal reflex in spinal anesthetized rats under normal and hyperexcitable conditions. Brain Res 981:12–22

    CAS  PubMed  Google Scholar 

  134. Fossat P, Sibon I, Le Masson G, Landry M, Nagy F (2007) L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity. Eur J Neurosci 25:127–135

    PubMed  Google Scholar 

  135. Hornby TG, Rymer WZ, Benz EN, Schmit BD (2003) Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials? J Neurophysiol 89: 416–426

    CAS  PubMed  Google Scholar 

  136. Li J, Simone DA, Larson AA (1999) Windup leads to characteristics of central sensitization. Pain 79:75–82

    CAS  PubMed  Google Scholar 

  137. Woolf C (1996) Windup and central sensitization are not equivalent. Pain 66:105–108

    CAS  PubMed  Google Scholar 

  138. Morisset V, Frédéric N (2000) Plateau potential-dependent windup of the response to primary afferent stimuli in rat dorsal horn neurons. Eur J Neurosci 12:3087–3095

    CAS  PubMed  Google Scholar 

  139. Russo RE, Nagy F, Hounsgaard J (1997) Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord. J Physiol 499:459–474

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Morisset V, Nagy F (1999) Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci 19:7309–7316

    CAS  PubMed  Google Scholar 

  141. Gerzanich V, Woo S, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard J (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Xu S-Z, Zeng F, Lei M, Li J, Gao B, Xiong C, Sivaprasadarao A, Beech DJ (2005) Generation of functional ion-channel tools by E3 targeting. Nat Biotech 23:1289–1293

    CAS  Google Scholar 

  143. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase I{gamma} to promote axon formation in hippocampal neurons. J Neurosci 29:9794–9808

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Riccio A, Li Y, Moon J, Kim K-S, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundación Eugenio Rodriguez Pascual. L.J-D was supported by Juan de la Cierva MICINN Programme, J.D.N-L by Ramón y Cajal MICINN Programme and A.R. was supported by a CONSOLIDER-INGENIO grant The Spanish Ion Channel Initiative (SICI) (MICINN, CSD2008-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Reboreda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reboreda, A., Jiménez-Díaz, L., Navarro-López, J.D. (2011). TRP Channels and Neural Persistent Activity. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_32

Download citation

Publish with us

Policies and ethics