Skip to main content
Log in

Keeping up with the neighbor: a novel mechanism of call synchrony in Neoconocephalus ensiger katydids

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

During solo calling, pulse periods gradually changed by up to 15 % over several minutes. Pairs of calling males synchronized their pulses. The pulse rate (10–14 Hz) was considerably faster than the rate of synchronized signal units in other insects (0.5–3 Hz). Within each pulse cycle, males made only small adjustments to their pulse period, leading to regular switches of leader and follower roles. Large-scale timing adjustments only occurred in response to large delays. Stimulation with single pulses had no predictable effect on the timing of the male’s next pulse, resulting in a flat phase response curve. When entrained to a stimulus with a faster pulse period, males briefly interrupted calling; they resumed calling largely synchronized with the stimulus. Throughout the stimulus, males made gradual changes to their pulse period, similar to those during pair calling. After the stimulus ended, pulse periods increased over several minutes, but did not return to their pre-stimulus values. Thus social context and intrinsic state of the males influenced pulse period in Neoconocephalus ensiger. These results indicate that N. ensiger males synchronize calls by adjusting their intrinsic pulse period, instead of adjusting the timing of individual pulses, as described in other synchronizing insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinelli C, Lund U (2013) R package ‘circular’: circular statistics (version 0.4-7). https://r-forge.r-prject.org/projects/circular. Accessed 5 Aug 2015

  • Buck J (1988) Synchronous rhythmic flashing of fireflies. II. Q Rev Biol 63:265–289

    Article  CAS  PubMed  Google Scholar 

  • Buck J, Buck E (1968) Mechanism of rhythmic synchronous flashing of fireflies. Science 159:1319–1327. doi:10.1126/science.159.3821.1319

    Article  CAS  PubMed  Google Scholar 

  • Deily JA (2006) Call recognition in three sympatric species of Neoconocephalus (Orthoptera: Tettigoniidae). Dissertation, University of Missouri

  • Ermentrout B (1991) An adaptive model for synchrony in the firefly Pteroptyx malaccae. J Math Biol 29:571–585. doi:10.1007/BF00164052

    Article  Google Scholar 

  • Faure PA, Hoy RR (2000) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera: Tettigoniidae). J Comp Physiol A 186:129–142

    Article  CAS  PubMed  Google Scholar 

  • Forrest T, Ariaratnam J, Strogatz S (1998) Synchrony in cricket calling songs: models of coupled biological oscillators. J Acoust Soc Am 103:2827. doi:10.1121/1.421935

    Article  Google Scholar 

  • Frederick KH (2013) Investigating an adaptive radiation in temperate Neoconocephalus (Orthoptera: Tettigoniidae). Dissertation, University of Missouri

  • Gerhardt HC (1991) Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635

    Article  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Greenfield MD (1990) Evolution of acoustic communication in the genus Neoconocephalus: discontinuous songs, synchrony, and interspecific interactions. In: Bailey WJ, Rentz DC (eds) The Tettigoniidae: biology, systematics, and evolution. Springer, Berlin, pp 71–97

    Chapter  Google Scholar 

  • Greenfield MD (1994a) Cooperation and conflict in the evolution of signal interactions. Annu Rev Ecol Syst 25:97–126. doi:10.1146/annurev.es.25.110194.000525

    Article  Google Scholar 

  • Greenfield MD (1994b) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. Integr Comp Biol 34:605–615. doi:10.1093/icb/34.6.605

    Google Scholar 

  • Greenfield MD (2005) Mechanisms and evolution of communal sexual displays in arthropods and anurans. Adv Stud Behav 35:1–62. doi:10.1016/S0065-3454(05)35001-7

    Article  Google Scholar 

  • Greenfield MD (2015) Signal interactions and interference in insect choruses: singing and listening in the social environment. J Comp Physiol A 201:143–154. doi:10.1007/s00359-014-0938-7

    Article  Google Scholar 

  • Greenfield MD, Roizen I (1993) Katydid synchronous chorusing is an evolutionarily stable outcome of female choice. Nature 364:618–620. doi:10.1038/364618a0

    Article  Google Scholar 

  • Greenfield MD, Schul J (2008) Mechanisms and evolution of synchronous chorusing: emergent properties and adaptive functions in Neoconocephalus katydids (Orthoptera: Tettigoniidae). J Comp Psychol 122:289–297. doi:10.1037/0735-7036.122.3.289

    Article  PubMed  Google Scholar 

  • Greenfield MD, Tourtellot MK, Snedden WA (1997) Precedence effects and the evolution of chorusing. P R Soc B 264:1355–1361. doi:10.1098/rspb.1997.0188

    Article  Google Scholar 

  • Hanson FE (1978) Comparative studies of firefly pacemakers. Fed Proc 37:2158–2164

    CAS  PubMed  Google Scholar 

  • Hartbauer M, Kratzer S, Steiner K, Römer H (2005) Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae: Orthoptera). J Comp Physiol A 191:175–188. doi:10.1007/s00359-004-0586-4

    Article  Google Scholar 

  • Hartbauer M, Haitzinger L, Kainz M, Römer H (2014) Competition and cooperation in a synchronous bushcricket chorus. Royal Soc Open Sci 1:140167. doi:10.1098/rsos.140167

    Article  CAS  Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J Neurophysiol 83:712–722

    CAS  PubMed  Google Scholar 

  • Jang Y, Greenfield MD (1996) Ultrasonic communication and sexual selection in wax moths: female choice based on energy and asynchrony of male signals. Anim Behav 51:1095–1106. doi:10.1006/anbe.1996.0111

    Article  Google Scholar 

  • Kong XL, Peck AS, Bush SL, Schul J (2015) The diversity of call recognition: selective phonotaxis in Neoconocephalus ensiger. J Insect Behav 28:651–663. doi:10.1007/s10905-015-9533-1

    Article  Google Scholar 

  • Lee N, Elias D, Mason A (2009) A precedence effect resolves phantom sound source illusions in the parasitoid fly Ormia ochracea. P Natl Acam Sci USA 106:6357–6362. doi:10.1073/pnas.0809886106

    Article  CAS  Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera: Tettigoniidae). J Comp Physiol A 169:507–514. doi:10.1007/BF00197663

    Article  CAS  PubMed  Google Scholar 

  • Meixner AJ, Shaw KC (1986) Acoustic and associated behavior of the coneheaded katydid, Neoconocephalus nebrascensis (Orthoptera: Tettigoniidae). Ann Entomol Soc Am 79:554–565

    Article  Google Scholar 

  • Nityananda V, Balakrishnan R (2007) Synchrony during acoustic interactions in the bushcricket Mecopoda ‘Chirper’ (Tettigoniidae: Orthoptera) is generated by a combination of chirp-by-chirp resetting and change in intrinsic chirp rate. J Comp Physiol A 193:51–65. doi:10.1007/s00359-006-0170-1

    Article  Google Scholar 

  • Party V, Streiff R, Marin-Cudraz T, Greenfield MD (2015) Group synchrony and alternation as an emergent property: elaborate chorus structure in a bushcricket is an incidental by-product of female preference for leading calls. Behav Ecol Sociobiol. doi:10.1007/s00265-015-2008-8

    Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 5 Aug 2015

  • Schul J, Patterson AC (2003) What determines the tuning of hearing organs and the frequency of calls? A comparative study in the katydid genus Neoconocephalus (Orthoptera: Tettigoniidae). J Exp Biol 206:141–152. doi:10.1242/jeb.00070

    Article  PubMed  Google Scholar 

  • Schulze W, Schul J (2001) Ultrasound avoidance behaviour in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J Exp Biol 204:733–740

    CAS  PubMed  Google Scholar 

  • Sismondo E (1990) Synchronous, alternating, and phase-locked stridulation by a tropical katydid. Science 249:55–58. doi:10.1126/science.249.4964.55

    Article  CAS  PubMed  Google Scholar 

  • Walker TJ (1969) Acoustic synchrony: two mechanisms in the snowy tree cricket. Science 166:891–894. doi:10.1126/science.166.3907.891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant of the National Science Foundation (IOS 1146878) to JS and a Graduate Assistance in Areas of National Need fellowship for MAM. We would like to thank the members of our lab for their support, help with this manuscript, and animal collection. We would also like to thank Carl Gerhardt, Laura Sloan, and two anonymous reviewers for their thoughtful comments and advice. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan A. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, M.A., Thompson, N.L. & Schul, J. Keeping up with the neighbor: a novel mechanism of call synchrony in Neoconocephalus ensiger katydids. J Comp Physiol A 202, 225–234 (2016). https://doi.org/10.1007/s00359-016-1068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1068-1

Keywords

Navigation