Skip to main content

Evolution of Call Patterns and Pattern Recognition Mechanisms in Neoconocephalus Katydids

  • Chapter
  • First Online:
Insect Hearing and Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 1))

Abstract

In the katydid genus Neoconocephalus, males typically produce continuous calls with an extremely fast pulse rate of about 200/s. Divergence from this ancestral pattern includes alternation of pulse periods resulting in a double-pulse pattern, and the grouping of pulses into chirps. Double-pulse patterns evolved five times independently in the genus. Analysis of the female preferences and call recognition mechanisms revealed that in three species with double-pulse pattern, females have independently evolved new mechanisms for recognizing the derived call pattern. In the remaining two species with double-pulse pattern, females retain the ancestral recognition mechanism and exhibit no preference for the derived temporal pattern. These results suggest that males are leading the evolutionary divergence of call patterns in this genus. We propose a hypothetical scenario in which genetic bottlenecks and founder effects arising from the climatic history of North America contributed to the rapid diversification of calls in this genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams J (1997) Preliminary vegetation maps of the world since the last glacial maximum: an aid to archaeological understanding. J of Archaeol Sci 24:623–647

    Article  Google Scholar 

  • Andersson M (2006) Condition-dependent indicators in sexual selection: development of theory and tests. In: Lucas JR, Simmons LW (eds) Essays in animal behaviour: celebrating 50 years of animal behaviour. Elsevier, Amsterdam, pp 253–267

    Google Scholar 

  • Andersson M, Simmons LW (2006) Sexual selection and mate choice. Trends Ecol Evol (Amst) 21:296–302. doi:10.1016/j.tree.2006.03.015

    Article  Google Scholar 

  • Beckers OM, Schul J (2008) Developmental plasticity of mating calls enables acoustic communication in diverse environments. Proc R Soc Lond B 275:1243–1248

    Article  Google Scholar 

  • Bloake CRB (1991) Coevolution of sender and receiver of sexual signals: genetic coupling and genetic correlations. Trends Ecol Evol 6:225–227. doi:10.1016/0169-5347(91)90027-U

    Article  Google Scholar 

  • Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491–6495

    Article  PubMed  CAS  Google Scholar 

  • Burk TE (1982) Evolutionary significance of predation on sexually signaling males. Fla Entomol 65:90–104

    Article  Google Scholar 

  • Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192:113–121. doi:10.1007/s00359-005-0053-x

    Article  Google Scholar 

  • Bush SL, Schul J (2010) Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5(8):e12457

    Article  PubMed  Google Scholar 

  • Bush SL, Beckers OM, Schul J (2009) A complex mechanism of call recognition in the katydid Neoconocephalus affinis (Orthoptera: Tettigoniidae). J Exp Biol 212:648–655. doi:10.1242/jeb.024786

    Article  PubMed  Google Scholar 

  • Butlin R, Ritchie MG (1989) Genetic coupling in mate recognition systems: what is the evidence. Biol J Linn Soc 37:237–246. doi:10.1111/j.1095-8312.1989.tb01902.x

    Google Scholar 

  • Büttner UK (2002) Charakterisierung der Gesänge von fünf in Missouri (USA) heimischen Neoconocephalus-Arten (Orthoptera, Tettigoniidae). Diplom Thesis, Friedrich Alexander University, Erlangen

    Google Scholar 

  • Deily JA, Schul J (2004) Recognition of calls with exceptionally fast pulse rates: Female phonotaxis in the genus Neoconocephalus (Orthoptera: Tettigoniidae). J Exp Biol 207:3523–3529

    Article  PubMed  Google Scholar 

  • Deily JA, Schul J (2006) Spectral selectivity during phonotaxis: a comparative study in Neoconocephalus (Orthoptera, Tettigoniidae). J Exp Biol 209:1757–1764

    Article  PubMed  Google Scholar 

  • Deily JA, Schul J (2009) Selective phonotaxis in Neoconocephalus nebrascensis (Orthoptera: Tettigoniidae): call recognition at two temporal scales. J Comp Physiol A 195:31–37

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  Google Scholar 

  • Ellison CK, Wiley C, Shaw KL (2011) The genetics of speciation: genes of small effect underlie sexual isolation in the Hawaiian cricket Laupala. J Evolution Biol 24:1110–1119. doi:10.1111/j.1420-9101.2011.02244.x

    Article  CAS  Google Scholar 

  • Grace JL, Shaw KL (2011) Coevolution of male mating signal and female preference during early lineage divergence ofthe Hawaiian cricket, Laupala cerasina. Evolution 65:2184–2196. doi:10.1111/j.1558-5646.2011.01278.x

    Article  PubMed  Google Scholar 

  • Greenfield MD (1983) Unsynchronized chorusing in the coneheaded katydid Neoconocephalus affinis (Beauvois). Anim Behav 31:102–112

    Article  Google Scholar 

  • Greenfield MD (1990) Evolution of acoustic communication in the genus Neoconocephalus: discontinuous songs, synchrony, and interspecific interaction. In: Bailey W, Rentz D (eds) The Tettigoniidae: biology, systematics, and evolution. Springer, New York, pp 72–97

    Google Scholar 

  • Greenfield MD (1993) Inhibition of male calling by heterospecific signals: artifact of chorusing or abstinence during suppression of female phonotaxis? Naturwissenschaften 80:570–573

    Article  Google Scholar 

  • Greenfield MD (2005) Mechanisms and evolution of communal sexual displays in arthropods and anurans. Adv Study Behav 35:1–62

    Article  Google Scholar 

  • Greenfield MD, Roizen I (1993) Katydid synchronous chorusing is an evolutionarily stable outcome of female choice. Nature 364:618–620

    Article  Google Scholar 

  • Greenfield MD, Schul J (2008) Mechanisms and evolution of synchronous chorusing: emergent properties and adaptive functions in Neoconocephalus katydids (Orthoptera: Tettigoniidae). J Comp Psychology 122:289–297

    Article  Google Scholar 

  • Heller KG (1988) Bioakustik der Europäischen Laubheuschrecken. Margraf, Weikersheim

    Google Scholar 

  • Ov Helversen, Dv Helversen (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. Fischer, Stuttgart, pp 253–284

    Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14:883–894

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JE (1984) Evolution of a firefly flash code. Florida Entomol 67:228–239

    Article  Google Scholar 

  • McDermott JH, Oxenham AJ (2008) Music perception, pitch, and the auditory system. Curr Opin Neurobiol 18:452–463. doi:10.1016/j.conb.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  • Mendelson T, Shaw K (2005) Rapid speciation in an arthropod. Nature 433:375–376. doi:10.1038/433375a

    Article  PubMed  CAS  Google Scholar 

  • Meixner AJ, Shaw KC (1986) Acoustic and associated behavior of the coneheaded katydid Neoconocephalus nebrascensis (Orthoptera: Tettigoniidae). Annals Entomol Soc Am 79:554–565

    Google Scholar 

  • Sanderson MJ (2003) r8 s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302. doi:10.1093/bioinformatics/19.2.301

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Ronacher B, Hennig RM (2008) The role of frequency, phase and time for processing of amplitude modulated signals by grasshoppers. J Comp Physiol A 194:221–233. doi:10.1007/s00359-007-0295-x

    Article  CAS  Google Scholar 

  • Schul J, Bush SL (2002) Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs. Proc R Soc Lond B 269:1847–1852

    Article  Google Scholar 

  • Schul J, Patterson AC (2003) What determines the tuning of hearing organs and the frequency of calls? a comparative study in the katydid genus Neoconocephalus (Orthoptera, Tettigoniidae). J Exp Biol 206:141–152

    Article  PubMed  Google Scholar 

  • Shaw KL, Herlihy DP (2000) Acoustic preference functions and song variability in the Hawaiian cricket Laupala cerasina. Proc Biol Sci 267:577–584. doi:10.1098/rspb.2000.1040

    Article  PubMed  CAS  Google Scholar 

  • Shaw KL, Lesnick SC (2009) Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation. P Natl Acad Sci Usa 106:9737–9742. doi:10.1073/pnas.0900229106

    Article  CAS  Google Scholar 

  • Snyder RL, Frederick-Hudson KH, Schul J (2009) Molecular phylogenetics of the genus Neoconocephalus (Orthoptera, Tettigoniidae) and the evolution of temperate life histories. PLoS ONE 4:e7203. doi:10.1371/journal.pone.0007203.t001

    Article  PubMed  Google Scholar 

  • Talwar M (2007) Function and evolution of the call spectrum in the katydid genus Neoconocephalus. Dissertation, University of Missouri, Columbia

    Google Scholar 

  • Thomas ES, Alexander RD (1962) Systematics and behavioral studies on the meadow grasshoppers of the Orchelimum concinnum group (Orthoptera: Tettigoniidae). Occas Pap Mus Zool Univ Mich 626:1–31

    Google Scholar 

  • Walker TJ (1975) Stridulatory movements of eight species of Neoconocephalus (Tettigoniidae). J Insect Physiol 21:595–603

    Article  PubMed  CAS  Google Scholar 

  • Walker TJ (2012) The singing insects of North America—Katydids. http://buzz.ifas.ufl.edu/crickets.htm. Cited 1 June 2012

  • Walker T, Greenfield M (1983) Songs and systematics of Caribbean Neoconocephalus (Tettigoniidae, Orthoptera). Trans Amer Ent Soc 109:357–389

    Google Scholar 

  • Wiley C, Ellison CK, Shaw KL (2012) Widespread genetic linkage of mating signals and preferences in the Hawaiian cricket Laupala. P Roy Soc B-Biol Sci 279:1203–1209. doi:10.1098/rspb.2011.1740

    Article  Google Scholar 

  • Wiley C, Shaw KL (2010) Multiple genetic linkages between female preference and male signal in rapidly speciating Hawaiian crickets. Evolution 64:2238–2245. doi:10.1111/j.1558-5646.2010.01007.x

    PubMed  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgments

We thank the numerous members of our lab for their contributions and support. Oli Beckers, Josh Deily, and Rob Snyder each contributed significantly to this research. Tom Walker and Michael Greenfield introduced JS and SLB to many aspects of Neoconocephalus natural history and helped locate many species for these studies. We would like to thank Peter Heinecke for his help in assembling and maintaining our walking compensator (“Kramer Kugel”), which has been instrumental for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schul, J., Bush, S.L., Frederick, K.H. (2014). Evolution of Call Patterns and Pattern Recognition Mechanisms in Neoconocephalus Katydids. In: Hedwig, B. (eds) Insect Hearing and Acoustic Communication. Animal Signals and Communication, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40462-7_10

Download citation

Publish with us

Policies and ethics