Skip to main content

A Brief History of Electrogenesis and Electroreception in Fishes

  • Chapter
  • First Online:
Electroreception: Fundamental Insights from Comparative Approaches

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 70))

Abstract

The primary goal of this volume is to provide an updated perspective on the topics of electrogenesis and electroreception in fishes. Throughout, there is an emphasis on how comparative perspectives can inform general issues regarding the neural mechanisms of behavior, from detailed comparisons among related species having divergent phenotypes to broad comparisons across distantly related clades having similar phenotypes. The underlying theme throughout is that evolution provides a natural experiment that can be exploited to relate variation in behavior to variation in its neural substrates. This allows for the development and testing of hypotheses regarding the neural control of behavior and for distinguishing generally applicable principles from clade-specific differences. The chapters cover a range of topics including the evolution and development of electric organs and electroreceptors, electrosensory transduction, evolutionary drivers and biophysical bases of electric signal diversity, influences of hormones and motor systems on electrosensory processing, envelope and temporal coding, use of control theory to characterize active sensing, and the role of active electrolocation and spatial learning in behavior. In this introductory chapter, a brief history of research on electrogenesis and electroreception in fishes is presented, with a summary of some of the most important neuroethological studies in electric fish that have contributed greatly to our understanding of brain function and the neural basis of behavior. The field of electroreception research continues to provide fertile ground for using comparative frameworks to understand the neurobiology of animal communication, social behavior, orientation and navigation, and the evolution of information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aristotle (1965) Historia animalium, vol 1. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Bancroft E (1769) An essay on the natural history of Guiana in South America. Becket and De Hondt, London

    Google Scholar 

  • Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge waveform. Science 220(4600):971–974

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    CAS  PubMed  Google Scholar 

  • Bell C, Maler L (2005) Central neuroanatomy of electrosensory systems in fish. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 68–111

    Chapter  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, London, pp 347–491

    Google Scholar 

  • Bennett MVL, Grundfest H (1959) Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol 42:1067–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MVL, Grundfest H (1961) Studies on the morphology and electrophysiology of electric organs. III. Electrophysiology of electric organs in mormyrids. In: Chagas C, Carvalho A (eds) Bioelectrogenesis. Elsevier, New York, pp 113–135

    Google Scholar 

  • Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 38:273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock TH (1982) Electroreception. Annu Rev Neurosci 5:121–170

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH, Szabo T (1986) Introduction. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 1–12

    Google Scholar 

  • Bullock TH, Hagiwara S, Kusano K, Negishi K (1961) Evidence for a category of electroreceptors in the lateral line of gymnotid fishes. Science 134(348):1426–1427

    Google Scholar 

  • Bullock TH, Hamstra RH, Scheich H (1972) The jamming avoidance response of high frequency electric fish. I. General features. J Comp Physiol 77(1):1–22

    Article  Google Scholar 

  • Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in gymnotoid and gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis. J Comp Physiol 103(1):97–121

    Article  Google Scholar 

  • Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) (2005) Electroreception. Springer, New York

    Google Scholar 

  • Caputi AA, Carlson BA, Macadar O (2005) Electric organs and their control. In: Bullock TH, Hopkins CD, Popper A, Fay RR (eds) Electroreception. Springer, New York, pp 410–451

    Chapter  Google Scholar 

  • Carlson BA (2006) A neuroethology of electrocommunication: senders, receivers, and everything in between. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 2. Science Publishers, Enfield, pp 805–848

    Google Scholar 

  • Carlson BA (2012) Diversity matters: the importance of comparative studies and the potential for synergy between neuroscience and evolutionary biology. Arch Neurol 69:987–993. https://doi.org/10.1001/archneurol.2012.77

    Article  PubMed  Google Scholar 

  • Catania KC (2014) The shocking predatory strike of the electric eel. Science 346:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Catania KC (2015a) Electric eels concentrate their electric field to induce involuntary fatigue in struggling prey. Curr Biol 25:2889–2898

    Article  CAS  PubMed  Google Scholar 

  • Catania KC (2015b) Electric eels use high-voltage to track fast-moving prey. Nat Commun 6:8661

    Article  CAS  Google Scholar 

  • Catania KC (2016) Leaping eels electrify threats, supporting Humboldt’s account of a battle with horses. P Natl Acad Sci USA 113:6979–6984

    Article  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Dijkgraaf S, Kalmijn AJ (1962) Nerhaltensversuche Zur Funktion Der Lorenzinischen Ampyllen. Naturwissenschaften 49(17):400

    Article  Google Scholar 

  • Dijkgraaf S, Kalmijn AJ (1963) Untersuchungen Uber Die Funktion Der Lorenzinischen Ampullen an Haifischen. Z Vergl Physiol 47(4):438–456

    Article  Google Scholar 

  • Fessard A, Szabo T (1961) Mise en évidence d’un récepteur sensible á l’électricité dans la peau des Mormyres. C R Acad Sci 253:1859–1860

    Google Scholar 

  • Finger S, Piccolino M (2011) The shocking history of electric fishes: from ancient epochs to the birth of modern neurophysiology. Oxford University Press, New York

    Book  Google Scholar 

  • Fritzsch B, Moller P (1995) A history of electroreception. In: Moller P (ed) Electric fishes: history and behavior. Chapman & Hall, New York, pp 39–103

    Google Scholar 

  • Griffin D (1958) Listening in the dark. Yale University Press, New Haven

    Google Scholar 

  • Grundfest H (1957) The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog Biophys Biophys Chem 7:1–85

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. In: Computational neuroscience series. MIT Press, Cambridge

    Google Scholar 

  • Hitschfeld ÉM, Stamper SA, Vonderschen K, Fortune ES, Chacron MJ (2009) Effects of restraint and immobilization on electrosensory behaviors of weakly electric fish. ILAR J 50:361–372

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (1972) Sex differences in electric signaling in an electric fish. Science 176(4038):1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1971) Electric sense of sharks and rays. J Exp Biol 55(2):371–383

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. U.S. Government Printing Office, Washington, D.C., pp 507–528

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobrach fishes. Science 218:916–918

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Phjysiol A 173(1):9–22

    CAS  Google Scholar 

  • Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26:587–599

    Article  Google Scholar 

  • Kramer B (1990) Electrocommunication in teleost fishes: behavior and experiments. Springer, New York

    Book  Google Scholar 

  • Kramer B (1996) Electroreception and communication in fishes. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Lissman HW (1951) Continuous electrical signals from the tail of a fish, Gymnarchus niloticus. Nature 167:201–202

    Article  Google Scholar 

  • Lissman HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • Lissman HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • Loewenstein WR (1960) Mechanisms of nerve impulse initiation in a pressure receptor (Lorenzian ampulla). Nature 188:1034–1035

    Article  CAS  PubMed  Google Scholar 

  • Lorenzini S (1678) Osservazioni intorno alle Torpedini. Per l’Onofri, Firenze

    Google Scholar 

  • Möhres FP (1957) Elektrische Entaldungen im Dienste der Revierabgrenzung bei Fischen. Naturwissenschaften 44:431–432

    Article  Google Scholar 

  • Moller P (1970) Communication in weakly electric fish (Gnathonemus niger, Mormyridae). Part 1. Variation of electric organ discharge frequency elicited by controlled electric stimuli. Anim Behav 18(4):768–786

    Article  Google Scholar 

  • Moller P (1995a) Electric fishes: history and behavior. Chapman & Hall, New York

    Google Scholar 

  • Moller P (1995b) A history of bioelectrogenesis. In: Moller P (ed) Electric fishes: history and behavior. Chapman & Hall, New York, pp 5–38

    Google Scholar 

  • Moller P, Bauer R (1973) Communication in weakly electric fish (Gnathonemus petersii, Mormyridae). Part 2. Interaction of electric organ discharge activities of two fish. Anim Behav 21(3):501–512

    Article  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral-line mechanosensory systems of fish. Neurosci Lett 174(2):145–148

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Bodznick D (1999) Signals and noise in the elasmobranch electrosensory system. J Exp Biol 202(10):1349–1355

    CAS  PubMed  Google Scholar 

  • Murray RW (1957) Evidence for a mechanoreceptive function of the ampullae of Lorenzini. Nature 179:106–107

    Article  CAS  PubMed  Google Scholar 

  • Murray RW (1960) Electrical sensitivity of the ampullae of Lorenzini. Nature 187:957

    Article  CAS  PubMed  Google Scholar 

  • Nelson ME (2005) Target detection, image analysis, and modeling. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception vol 21. Springer Handbook of Auditory Research. Springer, New York, pp 290–317

    Google Scholar 

  • Parker GH (1909) Influence of the eyes, ears, and other allied sense organs on the movements of the dogfish, Mustelus canis (Mitchill). Bulletin of the Bureau of Fisheries (Washington) 29:43–57

    Google Scholar 

  • Rose GJ (2004) Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci 5(12):943–951

    Article  CAS  PubMed  Google Scholar 

  • Sand A (1938) The function of the ampullae of Lorenzini, with some observations on the effect of temperature on sensory rhythms. Proc R Soc Lond B 125:524–553

    Article  Google Scholar 

  • Stark J (1844) On the existence of an electrical apparatus in the flapper skate and other rays. Proc R Soc Edinburgh 25(Vol. 2):1–3

    Google Scholar 

  • Striedter GF, Belgard TG, Chen C-C, Davis FP, Finlay BL, Güntürkün O, Hale ME, Harris JA, Hecht EE, Hof PR, Hofmann HA, Holland LZ, Iwaniuk AN, Jarvis ED, Karten HJ, Katz PS, Kristan WB, Macagno ER, Mitra PP, Moroz LL, Preuss TM, Ragsdale CW, Sherwood CC, Stevens CF, Stüttgen MC, Tsumoto T, Wilczynski W (2014) NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J Comp Neurol 522:1445–1453

    Article  PubMed  Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202(10):1205–1215

    PubMed  Google Scholar 

  • von Humboldt A (1807) Jagd und Kampf der electrischen Aale mit Pferden. Aus den Reiseberichten des Hrn. Freiherrn Alexander v Humboldt Gilberts Annalen der Physik 25:34–43

    Google Scholar 

  • Watanabe A, Takeda K (1963) The change of discharge frequency by A.C. stimulus in a weakly electric fish. J Exp Biol 40:57–66

    Google Scholar 

  • Yartsev MM (2017) The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science 358:466–469

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH (2003) Insight into the mechanisms of neuronal processing from electric fish. Curr Opin Neurobiol 13:744–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants IOS-1050701, IOS-1255396, and IOS-1755071 to Bruce A. Carlson and Grant IOS-1456700 to Joseph A. Sisneros from the National Science Foundation.

Compliance with Ethics Requirements

Bruce A. Carlson declares that he has no conflict of interest.

Joseph A. Sisneros declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Carlson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlson, B.A., Sisneros, J.A. (2019). A Brief History of Electrogenesis and Electroreception in Fishes. In: Carlson, B., Sisneros, J., Popper, A., Fay, R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-29105-1_1

Download citation

Publish with us

Policies and ethics