Skip to main content
Log in

Experimental investigation of extreme skin friction events in polymer drag-reduced turbulent boundary layers

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An experimental investigation is conducted using planar and tomographic particle image velocimetry (PIV) measurements in the near-wall region of drag-reduced zero-pressure-gradient turbulent boundary layers. Drag reductions of approximately 20 and \(30\%\) were achieved using injection of two different concentrations of polymer solutions into the boundary layer via a two-dimensional inclined slot. The PIV measurements are utilized for evaluating the effect of the polymers on the near-wall flow fields associated with extreme skin-friction events, which are identified by proxy of fluctuating streamwise velocity at the edge of the viscous sublayer. A binary scale decomposition technique is employed to investigate the dampening of small-scale motions in drag-reduced flows using the three-dimensional measurements. The scale decomposed results highlight a range of small-scale structures (\(< \sim \delta /2\)) with negligible contribution to the Reynolds shear stresses (RSS) in the polymer-injected flows, while the effect of the polymer on the large-scale motions (\(>\sim \delta /2\)) remains negligible. Furthermore, conditional averaging of the near-wall flow field elucidates the topology within the buffer and lower-log regions associated with extreme large-scale low and high wall-shear stress events. The results highlight the effect of polymer injection on the phase differences between the extreme wall-shear stress events and the RSS producing large-scale coherent structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abe H, Kawamura H, Choi H (2004) Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to \(\rm Re_\tau = 640\). J Fluids Eng 126(5):835–843

    Article  Google Scholar 

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Article  MathSciNet  MATH  Google Scholar 

  • Alfredsson PH, Örlü R (2010) The diagnostic plot–a litmus test for wall bounded turbulence data. Eur J Mech-B/Fluids 29(6):403–406

    Article  MATH  Google Scholar 

  • Alfredsson PH, Johansson AV, Haritonidis JH, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids 31(5):1026–1033

    Article  Google Scholar 

  • Alfredsson PH, Örlü R, Schlatter P (2011) The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity. Exp Fluids 51(1):271–280

    Article  Google Scholar 

  • Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47(4–5):553

    Article  Google Scholar 

  • Atkinson C, Coudert S, Foucaut JM, Stanislas M, Soria J (2011) The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp Fluids 50(4):1031–1056

    Article  Google Scholar 

  • Bernardini M, Pirozzoli S (2011) Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys Fluids 23(6):061701

    Article  Google Scholar 

  • Braslow AL, Knox EC (1958) Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at mach numbers from 0 to 5

  • Bross M, Fuchs T, Kähler CJ (2019) Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers. J Fluid Mech 873:287–321

    Article  MathSciNet  MATH  Google Scholar 

  • Colella KJ, Keith WL (2003) Measurements and scaling of wall shear stress fluctuations. Exp Fluids 34(2):253–260

    Article  Google Scholar 

  • De Angelis E, Casciola CM, L‘vov Piva R, Procaccia I (2003) Drag reduction by polymers in turbulent channel flows: energy redistribution between invariant empirical modes. Physical Review E 67(5):056312

    Article  Google Scholar 

  • Deck S, Renard N, Laraufie R, Weiss PÉ (2014) Large-scale contribution to mean wall shear stress in high-reynolds-number flat-plate boundary layers up to 13650. J Fluid Mech 743:202

    Article  Google Scholar 

  • Diaz-Daniel C, Laizet S, Vassilicos JC (2017) Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer. Phys Fluids 29(5):055102

    Article  Google Scholar 

  • Dubief Y, White CM, Terrapon VE, Shaqfeh ES, Moin P, Lele SK (2004) On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J Fluid Mech 514:271–280

    Article  MATH  Google Scholar 

  • Dubief Y, Terrapon VE, White CM, Shaqfeh ES, Moin P, Lele SK (2005) New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul Combust 74(4):311–329

    Article  MATH  Google Scholar 

  • Elbing BR, Perlin M, Dowling DR, Ceccio SL (2013) Modification of the mean near-wall velocity profile of a high-reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions. Phys Fluids 25(8):085103

    Article  Google Scholar 

  • Elsinga G, Westerweel J (2012) Tomographic-piv measurement of the flow around a zigzag boundary layer trip. Exp Fluids 52(4):865–876

    Article  Google Scholar 

  • Fukagata K, Iwamoto K, Kasagi N (2002) Contribution of reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids 14(11):L73–L76

    Article  MATH  Google Scholar 

  • Ganapathisubramani B, Hutchins N, Hambleton W, Longmire E, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations

  • Ganapathisubramani B, Hutchins N, Monty J, Chung D, Marusic I (2012) Amplitude and frequency modulation in wall turbulence. J Fluid Mech 712(61):064602–17

    MathSciNet  MATH  Google Scholar 

  • Gomit G, De Kat R, Ganapathisubramani B (2018) Structure of high and low shear-stress events in a turbulent boundary layer. Phys Rev Fluids 3(1):014609

    Article  Google Scholar 

  • Gubian PA, Stoker J, Medvescek J, Mydlarski L, Baliga BR (2019) Evolution of wall shear stress with reynolds number in fully developed turbulent channel flow experiments. Phys Rev Fluids 4(7):074606

    Article  Google Scholar 

  • Hamilton JM, Kim J, Waleffe F (1995) Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech 287(1):317–348

    Article  MATH  Google Scholar 

  • Hou Y, Somandepalli V, Mungal M (2008) Streamwise development of turbulent boundary-layer drag reduction with polymer injection. J Fluid Mech 597:31–66

    Article  MATH  Google Scholar 

  • Housiadas KD, Beris AN (2003) Polymer-induced drag reduction: effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys Fluids 15(8):2369–2384

    Article  MATH  Google Scholar 

  • Hunt JC, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows

  • Hutchins N, Monty JP, Ganapathisubramani B, Ng HCH, Marusic I (2011) Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer. J Fluid Mech 673:255

    Article  MATH  Google Scholar 

  • Jiménez J (2018) Coherent structures in wall-bounded turbulence. J Fluid Mech. Vol. 842

  • Jiménez J, Pinelli A (1999) The autonomous cycle of near-wall turbulence. J Fluid Mech 389:335–359

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez J, Del Alamo JC, Flores O (2004) The large-scale dynamics of near-wall turbulence. J Fluid Mech 505:179

    Article  MathSciNet  MATH  Google Scholar 

  • Kähler C (2004) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo piv. Exp Fluids 36(1):114–130

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012) On the uncertainty of digital piv and ptv near walls. Exp Fluids 52(6):1641–1656

    Article  Google Scholar 

  • Kim J (1985) Turbulence structures associated with the bursting event. Phys Fluids 28(1):52–58

    Article  Google Scholar 

  • Kim J (1987) Evolution of a vortical structure associated with the bursting event in a channel flow. In: Turbulent shear flows 5, Springer, pp 221–233

  • Kim K, Li CF, Sureshkumar R, Balachandar S, Adrian RJ (2007) Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J Fluid Mech 584:281–299

    Article  MATH  Google Scholar 

  • Kline SJ, Reynolds WC, Schraub F, Runstadler P (1967) The structure of turbulent boundary layers. J Fluid Mech 30(4):741–773

    Article  MATH  Google Scholar 

  • Kravchenko AG, Choi H, Moin P (1993) On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A 5(12):3307–3309

    Article  Google Scholar 

  • Kushwaha A, Park JS, Graham MD (2017) Temporal and spatial intermittencies within channel flow turbulence near transition. Phys Rev Fluids 2(2):024603

    Article  Google Scholar 

  • Lenaers P, Li Q, Brethouwer G, Schlatter P, Örlü R (2012) Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys Fluids 24(3):035110

    Article  Google Scholar 

  • Li W, Graham MD (2007) Polymer induced drag reduction in exact coherent structures of plane poiseuille flow. Phys Fluids 19(8):083101

    Article  MATH  Google Scholar 

  • Lumley JL (1969) Drag reduction by additives. Annu Rev Fluid Mech 1(1):367–384

    Article  Google Scholar 

  • Mathis R, Hutchins N, Marusic I (2009) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers

  • Meinhart CD, Wereley ST, Santiago JG (2000) A piv algorithm for estimating time-averaged velocity fields. J Fluids Eng 122(2):285–289

    Article  Google Scholar 

  • Min T, Yoo JY, Choi H, Joseph DD (2003) Drag reduction by polymer additives in a turbulent channel flow. J Fluid Mech 486:213–238

    Article  MATH  Google Scholar 

  • Obi S, Inoue K, Furukawa T, Masuda S (1996) Experimental study on the statistics of wall shear stress in turbulent channel flows. Int J Heat Fluid Flow 17(3):187–192

    Article  Google Scholar 

  • Offen G, Kline S (1975) A proposed model of the bursting process in turbulent boundary layers. J Fluid Mech 70(2):209–228

    Article  Google Scholar 

  • Örlü R, Vinuesa R (2020) Instantaneous wall-shear-stress measurements: advances and application to near-wall extreme events. Meas Sci Technol 31(11):112001

    Article  Google Scholar 

  • Pereira AS, Mompean G, Thais L, Thompson RL (2017) Statistics and tensor analysis of polymer coil-stretch mechanism in turbulent drag reducing channel flow. J Fluid Mech 824:135–173

    Article  MathSciNet  Google Scholar 

  • Petrie H, Fontaine AA (1996) Comparison of turbulent boundary layer modifications with slot-injected and homogeneous drag-reducing polymer solutions. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED 237:205–208

  • Roach P, Brierley D (1990) The influence of a turbulent free-stream on zero pressure gradient transitional boundary layer development: Part 1. test cases t3a and t3b. In: ERCOFTAC Workshop, Lausanne, 1990

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601–639

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid piv image processing. Exp Fluids 29(1):S051–S060

    Google Scholar 

  • Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116

    Article  MATH  Google Scholar 

  • Schlatter P, Örlü R (2010) Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys Fluids 22(5):051704

    Article  MATH  Google Scholar 

  • Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JH, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to re \(\theta\)= 2500 studied through simulation and experiment. Phys Fluids 21(5):051702

    Article  MATH  Google Scholar 

  • Sciacchitano A (2019) Uncertainty quantification in particle image velocimetry. Meas Sci Technol 30(9):092001

    Article  Google Scholar 

  • Sciacchitano A, Scarano F, Wieneke B (2012) Multi-frame pyramid correlation for time-resolved piv. Exp Fluids 53(4):1087–1105

    Article  Google Scholar 

  • Shaban S, Azad M, Trivedi J, Ghaemi S (2018) Investigation of near-wall turbulence in relation to polymer rheology. Phys Fluids 30(12):125111

    Article  Google Scholar 

  • Shah Y, Yarusevych S (2020) Streamwise evolution of drag reduced turbulent boundary layer with polymer solutions. Phys Fluids 32(6):065108

    Article  Google Scholar 

  • Shah Y, Ghaemi S, Yarusevych S (2021) (submitted), three dimensional characterization of reynolds shear stress in near-wall coherent structures of polymer drag reduced turbulent boundary layers. Experiments in Fluids

  • Sheng J, Malkiel E, Katz J (2008) Using digital holographic microscopy for simultaneous measurements of 3d near wall velocity and wall shear stress in a turbulent boundary layer. Exp Fluids 45(6):1023–1035

    Article  Google Scholar 

  • Sheng J, Malkiel E, Katz J (2009) Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer. J Fluid Mech 633:17

    Article  MATH  Google Scholar 

  • Sibilla S, Beretta CP (2005) Near-wall coherent structures in the turbulent channel flow of a dilute polymer solution. Fluid Dyn Res 37(3):183

    Article  MATH  Google Scholar 

  • Sillero JA, Jiménez J, Moser RD (2014) Two-point statistics for turbulent boundary layers and channels at reynolds numbers up to \(\delta\)\(+\) 2000. Phys Fluids 26(10):105109

    Article  Google Scholar 

  • Sreenivasan KR, White CM (2000) The onset of drag reduction by dilute polymer additives, and the maximum drag reduction asymptote. J Fluid Mech 409:149–164

    Article  MATH  Google Scholar 

  • Stone PA, Roy A, Larson RG, Waleffe F, Graham MD (2004) Polymer drag reduction in exact coherent structures of plane shear flow. Phys Fluids 16(9):3470–3482

    Article  MATH  Google Scholar 

  • Tabor M, De Gennes P (1986) A cascade theory of drag reduction. EPL (Europhys Lett) 2(7):519

    Article  Google Scholar 

  • Tamano S, Graham MD, Morinishi Y (2011) Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J Fluid Mech 686:352–377

    Article  MATH  Google Scholar 

  • Tomkins CD, Adrian RJ (2003) Spanwise structure and scale growth in turbulent boundary layers. J Fluid Mech 490:37–74

    Article  MATH  Google Scholar 

  • Tritton D (1967) Some new correlation measurements in a turbulent boundary layer. J Fluid Mech 28(3):439–462

    Article  Google Scholar 

  • Virk PS (1975) Drag reduction fundamentals. AIChE J 21(4):625–656

    Article  Google Scholar 

  • Wang J, Pan C, Wang J (2020) Characteristics of fluctuating wall-shear stress in a turbulent boundary layer at low-to-moderate reynolds number. Phys Rev Fluids 5(7):074605

    Article  Google Scholar 

  • Wang SN, Shekar A, Graham MD (2017) Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J Nonnewton Fluid Mech 244:104–122

    Article  MathSciNet  Google Scholar 

  • Warholic M, Massah H, Hanratty T (1999) Influence of drag-reducing polymers on turbulence: effects of reynolds number, concentration and mixing. Exp Fluids 27(5):461–472

    Article  Google Scholar 

  • Warholic M, Heist D, Katcher M, Hanratty T (2001) A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence. Exp Fluids 31(5):474–483

    Article  Google Scholar 

  • Whalley RD, Park JS, Kushwaha A, Dennis DJ, Graham MD, Poole RJ (2017) Low-drag events in transitional wall-bounded turbulence. Phys Rev Fluids 2(3):034602

    Article  Google Scholar 

  • White C, Somandepalli V, Mungal M (2004) The turbulence structure of drag-reduced boundary layer flow. Exp Fluids 36(1):62–69

    Article  Google Scholar 

  • White CM, Mungal MG (2008) Mechanics and prediction of turbulent drag reduction with polymer additives. Ann Rev Fluid Mech 40:235–256

    Article  MathSciNet  MATH  Google Scholar 

  • Wieneke B (2008) Volume self-calibration for 3d particle image velocimetry. Exp Fluids 45(4):549–556

    Article  Google Scholar 

  • Worth N, Nickels T, Swaminathan N (2010) A tomographic piv resolution study based on homogeneous isotropic turbulence dns data. Exp Fluids 49(3):637–656

    Article  Google Scholar 

  • Wu J, Tulin M (1972) Drag reduction by ejecting additive solutions into pure-water boundary layer. J Basic Eng 94(4):749–754

    Article  Google Scholar 

  • Xi L (2019) Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys Fluids 31(12):121302

    Article  Google Scholar 

  • Xi L, Graham MD (2010) Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids. Phys Rev Lett 104(21):218301

    Article  Google Scholar 

  • Xi L, Graham MD (2012) Intermittent dynamics of turbulence hibernation in newtonian and viscoelastic minimal channel flows. J Fluid Mech 693:433

    Article  MATH  Google Scholar 

  • Zhu L, Schrobsdorff H, Schneider TM, Xi L (2018) Distinct transition in flow statistics and vortex dynamics between low-and high-extent turbulent drag reduction in polymer fluids. J Nonnewton Fluid Mech 262:115–130

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yarusevych.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, Y., Ghaemi, S. & Yarusevych, S. Experimental investigation of extreme skin friction events in polymer drag-reduced turbulent boundary layers. Exp Fluids 63, 27 (2022). https://doi.org/10.1007/s00348-021-03374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-021-03374-6

Navigation