Skip to main content

Advertisement

Log in

Unsteady boundary layer development on a wind turbine blade: an experimental study of a surrogate problem

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Wind turbines with thick blade profiles experience turbulent, periodic approach flow, leading to unsteady blade loading and large torque fluctuations on the turbine drive shaft. Presented here is an experimental study of a surrogate problem representing some key aspects of the wind turbine unsteady fluid mechanics. This experiment has been designed through joint consideration by experiment and computation, with the ultimate goal of numerical model development for aerodynamics in unsteady and turbulent flows. A cylinder at diameter Reynolds number of 65,000 and Strouhal number of 0.184 is placed 10.67 diameters upstream of a NACA 63215b airfoil with chord Reynolds number of 170,000 and chord-reduced frequency of \(k=2\pi f\frac{c}{2}/V=1.5\). Extensive flow field measurements using particle image velocimetry provide a number of insights about this flow, as well as data for model validation and development. Velocity contours on the airfoil suction side in the presence of the upstream cylinder indicate a redistribution of turbulent normal stresses from transverse to streamwise, consistent with rapid distortion theory predictions. A study of the boundary layer over the suction side of the airfoil reveals very low Reynolds number turbulent mean streamwise velocity profiles. The dominance of the high amplitude large eddy passages results in a phase lag in streamwise velocity as a function of distance from the wall. The results and accompanying description provide a new test case incorporating moderate-reduced frequency inflow for computational model validation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Atassi HM, Grzedzinski J (1989) Unsteady disturbances of streaming motions around bodies. J Fluid Mech 209:385–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bentaleb Y, Leschziner MA (2013) The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient. Int J Heat Fluid Flow 43:109–119. https://doi.org/10.1016/j.ijheatfluidflow.2013.05.010

    Article  Google Scholar 

  • Cadel DR (2016) Advanced instrumentation and measurement techniques for near surface flows. PhD Dissertation, Virginia Tech

  • Cal RB, Lebrón J, Castillo L,  Kang HS, Meneveau C (2010) Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J Renew Sustain Energy 2:013106–013126. https://doi.org/10.1063/1.3289735

    Article  Google Scholar 

  • Cao HL, Chen JG, Zhou T, Antonia RA, Zhou Y (2014) Three-dimensional momentum and heat transport in a turbulent cylinder wake. In: 19th Australasian fluid mechanics conference

  • Chesnakas CJ, Simpson RL (1996) Measurements of the turbulence structure in the vicinity of a 3-D separation. Trans ASME 118:268–275

    Google Scholar 

  • Clauser FH (1956) The turbulent boundary layer. Adv Appl Mech 4:1–51

    Article  Google Scholar 

  • Concept Smoke Systems (2015) Standard range of smoke generating systems health and safety data

  • Devenport WJ, Schetz JA (1998) Boundary layer codes for students in java. In: Proceedings of fluids engineering division summer meeting, FEDSM98-5139

  • Gaumond M, Réthoré PE, Ott S, Peña A, Bechmann A, Hansen KS (2013) Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm. Wind Energ 17:1169–1178. https://doi.org/10.1002/we.1625

    Article  Google Scholar 

  • Gete Z, Evans RL (2003) An experimental investigation of unsteady turbulent-wake/boundary-layer interaction. J Fluid Struct 17:43–55

    Article  Google Scholar 

  • Glegg S, Devenport WJ (2017) Aeroacoustics of low mach number flows: fundamentals, analysis, and measurement. Elsevier, London

    Google Scholar 

  • Goldstein ME, Atassi H (1976) A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J Fluid Mech 74:741–765

    Article  MATH  Google Scholar 

  • Greschner B, Thiele F, Casalino D, Jacob M (2004) Influence of turbulence modeling on the broadband noise simulation for complex flows. In: 10th AIAA/CEAS aeroacoustics conference, AIAA-2004-2926

  • Henning A, Koop L, Ehrenfried K (2010) Simultaneous particle image velocimetry and microphone array measurements on a rod-airfoil configuration. AIAA J 48:2263–2273. https://doi.org/10.2514/1.J050314

    Article  Google Scholar 

  • Hicks RM, Schairer ET (1979) Effects of upper surface modification on the aerodynamic characteristics of the NACA 63 sub 2-215 airfoil section. In: National Aeronautics and Space Administration, TM-78503

  • Homola MC, Wallenius T, Makkonen L (2010) Turbine size and temperature dependence of icing on wind turbine blades. Wind Eng 34:615–628

    Article  Google Scholar 

  • Hunt J, Graham J (1978) Free-stream turbulence near plane boundaries. J Fluid Mech 84:209–235

    Article  MathSciNet  MATH  Google Scholar 

  • Jacob MC, Boudet J, Casalino D, Michard M (2004) A rod-airfoil experiment as a benchmark for broadband noise modeling. Theor Comput Fluid Dyn 19:171–196. https://doi.org/10.1007/s00162-004-0108-6

    Article  MATH  Google Scholar 

  • Joseph LA (2014) Transition Detection for low speed wind tunnel testing using infrared thermography. MS Thesis, Virginia Tech

  • Konrath R, Klein C, Schröder A, Kompenhans J (2008) Combined application of pressure sensitive paint and particle image velocimetry to the flow above a delta wing. Exp Fluids 44:357–366. https://doi.org/10.1007/s00348-007-0445-5

    Article  Google Scholar 

  • De La Riva DH, Devenport WJ, Muthanna C (2004) Behavior of turbulence flowing through a compressor cascade. AIAA J 42:1302–1313

    Article  Google Scholar 

  • Langtry RB, Menter FR (2005) Transition modeling for general CFD applications in aeronautics. AIAA SciTech (43rd Aerospace Sciences Meeting), AIAA-2005-522

  • Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47:2894–2906. https://doi.org/10.2514/1.42362

    Article  Google Scholar 

  • Lowe KT, Simpson RL (2009) An advanced laser-doppler velocimeter for full-vector particle position and velocity measurements. Meas Sci Technol 20:045402. https://doi.org/10.1088/0957-0233/20/4/045402

    Article  Google Scholar 

  • Matsumura M, Antonia RA (1993) Momentum and heat transport in the turbulent intermediate wake of a circular cylinder. J Fluid Mech 250:651–668. https://doi.org/10.1017/S0022112093001600

    Article  Google Scholar 

  • Menter FR, Langtry R, Völker S (2006) Transition modelling for general purpose CFD codes. Flow Turbulence Combust 77:277–303. https://doi.org/10.1007/s10494-006-9047-1

    Article  MATH  Google Scholar 

  • Menter FR, Smirnov PE, Liu T, Avancha R (2015) A one-equation local correlation-based transition model. Flow Turbulence Combust. https://doi.org/10.1007/s10494-015-9622-4

    Google Scholar 

  • Mish PF, Devenport WJ (2006) An experimental investigation of unsteady surface pressure on an airfoil in turbulence—Part 1: effects of mean loading. J Sound Vib 296:417–446. https://doi.org/10.1016/j.jsv.2005.08.008

    Article  Google Scholar 

  • Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1(1):3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  • Molinaro NJ (2017) The two point correlation structure of a cylinder wake. MS Thesis, Virginia Tech

  • Nandi TN, Herrig A, Brasseur JG (2017) Non-steady wind turbine response to daytime atmospheric turbulence. Phil Trans R Soc A 375(2091):20160103

    Article  Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Moradei F, Barthet A, Sevrain A, Hoarau Y (2006a) Near-wake turbulence properties in the high reynolds number incompressible flow around a circular cylinder measured by two- and three-component PIV. Flow Turbulence Combust 77:185–204. https://doi.org/10.1007/s10494-006-9043-5

    Article  MATH  Google Scholar 

  • Perrin R, Cid E, Cazin S, Sevrain A, Braza M, Moradei F, Harran G (2006b) Phase-averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV. Exp Fluids 42:93–109. https://doi.org/10.1007/s00348-006-0223-9

    Article  MATH  Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp Fluids 43:341–355. https://doi.org/10.1007/s00348-007-0347-6

    Article  Google Scholar 

  • Perrin R, Braza M, Cid E, Cazin S, Chassaing P, Mockett C, Reimann T, Thiele F  (2008) Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number. J Fluid Struct 24:1313–1325. https://doi.org/10.1016/j.jfluidstructs.2008.08.005

    Article  Google Scholar 

  • Pierce A, Lu F (2012) New seeding and surface treatment methods for particle image velocimetry. AIAA SciTech (49th Aerospace Sciences Meeting), AIAA-2011-1164

  • Pope SB (2000) Turbulent flows. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Purtell LP, Klebanoff PS, Buckley FT (1981) Turbulent boundary layer at low Reynolds number. Phys Fluid (1958–1988). https://doi.org/10.1063/1.863452

  • Reynolds WC, Hussain A (1972) The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J Fluid Mech 54:263–288

    Article  Google Scholar 

  • Sagol E, Reggio M, Ilinca A (2013) Issues concerning roughness on wind turbine blades. Renew Sustain Energy Rev 23:514–525. https://doi.org/10.1016/j.rser.2013.02.034

    Article  Google Scholar 

  • Schetz JA, Bowersox RDW (2011) Boundary layer analysis, 2nd edn. American Institute of Aeronautics and Astronautics, Reston, VA

    Google Scholar 

  • Sciacchitano A, Neal DR, Smith BL, Warner SO, Vlachos PP, Wieneke B, Scarano F (2015) Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas Sci Technol 26:074004. https://doi.org/10.1088/0957-0233/26/7/074004

    Article  Google Scholar 

  • Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29:406–417. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  • Simpson RL, Shivaprasad BG (1983) The structure of a separating boundary layer. Part 5. Frequency effects on periodic unsteady free-stream flows. J Fluid Mech 131:319–339

    Article  Google Scholar 

  • Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Re θ = 1410. J Fluid Mech 187:61–98. https://doi.org/10.1017/S0022112088000345

    Article  MATH  Google Scholar 

  • Spalart PR (2001) Young–Person’s Guide to Detached-Eddy Simulation Grids. National Aeronautics and Space Administration CR-2001-211032

  • Spalart PR, Jou WH, Strelets M (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu C, Liu Z (eds) Advances in DNS/LES, Greyden Press, Columbus

    Google Scholar 

  • Spalart PR, Deck S, Shur ML, Squires KD, Strelets MKh, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20:181–195. https://doi.org/10.1007/s00162-006-0015-0

    Article  MATH  Google Scholar 

  • Spalding DB (1961) A single formula for the “law of the wall”. J Appl Mech 28(3):455–458. https://doi.org/10.1115/1.3641728

    Article  MATH  Google Scholar 

  • Steelant J, Dick E (1996) Modelling of bypass transition with conditioned Navier–Stokes equations coupled to an intermittency transport equation. Int J Numer Methods Fluids 23:193–220

    Article  MATH  Google Scholar 

  • Stokes GG (1850) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc IX:8

    Google Scholar 

  • Tardu SF, Binder G, Blackwelder RF (1994) Turbulent channel flow with large-amplitude velocity oscillations. J Fluid Mech 267:109–151

    Article  Google Scholar 

  • Thomas NH, Hancock PE (1977) Grid turbulence near a moving wall. J Fluid Mech 82:481–496

    Article  Google Scholar 

  • Timmer WA, van Rooij RPJOM. (2003) Summary of the delft university wind turbine dedicated airfoils. J Sol Energy Eng 125:488. https://doi.org/10.1115/1.1626129

    Article  Google Scholar 

  • Tosun MM (2005) Investigation of aerodynamic effects on performance of wind turbine blades by using finite element method. MS Thesis, Izmir Institute of Technology

  • Tsahalis DT, Telionis DP (1974) Oscillating laminar boundary layers and unsteady separation. AIAA J 12(11):1469–1476

    Article  MATH  Google Scholar 

  • Tsai RY (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Autom RA 3:323–344

    Article  Google Scholar 

  • Varano ND (2010) Fluid dynamics and surface pressure fluctuations of turbulent boundary layers over sparse roughness. PhD Dissertation, Virginia Tech

  • Vijayakumar G (2015) Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer resolved CFD. PhD Dissertation, Penn State University

  • Violato D, Moore P, Scarano F (2010) Lagrangian and Eulerian pressure field evaluation of rod-airfoil flow from time-resolved tomographic PIV. Exp Fluids 50:1057–1070. https://doi.org/10.1007/s00348-010-1011-0

    Article  Google Scholar 

  • Virk MS, Homola MC, Nicklasson PJ (2010) Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles. Wind Eng 34:207–218

    Article  Google Scholar 

  • Wei T, Schmidt R, McMurty P (2005) Comment on the Clauser chart method for determining the friction velocity. Exp Fluids 38:695–699. https://doi.org/10.1007/s00348-005-0934-3

    Article  Google Scholar 

  • Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280. https://doi.org/10.1007/s00348-005-0962-z

    Article  Google Scholar 

  • Wieneke B (2015) PIV uncertainty quantification from correlation statistics. Meas Sci Technol 1–10. https://doi.org/10.1088/0957-0233/26/7/074002

  • Wieneke B, Pfeiffer K (2010) Adaptive PIV with variable interrogation window size and shape. In: Proceedings of the 15th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal, 5–8

  • Zhang D, Cadel DR, Paterson EG, Lowe KT (2017) Numerical and experimental study of the unsteady transitional boundary layer on a wind turbine airfoil. In: 35th Wind energy symposium, Grapevine, Texas, AIAA-2017-0917

Download references

Acknowledgements

The authors wish to acknowledge the support of the Virginia Tech Institute for Critical Technology and Applied Science (ICTAS), Award Number J0663127, program managers Dennis Grove and Jon Greene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Todd Lowe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadel, D.R., Zhang, D., Lowe, K.T. et al. Unsteady boundary layer development on a wind turbine blade: an experimental study of a surrogate problem. Exp Fluids 59, 72 (2018). https://doi.org/10.1007/s00348-018-2526-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2526-z

Navigation