Skip to main content
Log in

Navigating Through Harsh Conditions: Coordinated Networks of Plant Adaptation to Abiotic Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants, being immobile, are vulnerable to a variety of environmental challenges, including abiotic stresses such as high temperatures, low temperatures, flooding, drought, heavy metal toxicity, and high salt levels, all of which can negatively impact plant growth and productivity. These stresses can cause a variety of plant responses, including the production of reactive oxygen species, damage to cell membranes, and decreased photosynthetic efficiency which can disrupt growth and development, by impacting biochemical, physiological, and molecular processes. Plants have evolved complex mechanisms to deal with these abiotic stresses. The way that plants perceive and respond to stress signals plays a crucial role in initiating the resistance mechanisms. Recent research has highlighted the complexity of the molecular processes involved in plant responses to abiotic stress, including signal perception, signaling cascades, gene expression, protein synthesis and post-translational modifications. This review provides an overview of how plants respond to major abiotic stresses, including cold, heat, drought, and salinity, on both at physiological and molecular level. We have also discussed the ways in which plants sense various stresses and use molecular signaling to enhance tolerance to environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhiyarova G, Veselov D, Ivanov R, Sharipova G, Ivanov I, Dodd IC, Kudoyarova G (2023) Root ABA accumulation delays lateral root emergence in osmotically stressed barley plants by decreasing root primordial IAA accumulation. Int J Plant Biol 14(1):77–90

    Article  CAS  Google Scholar 

  • Andrew PL, Selvaraj R, Kumar KK, Muthamilarasan M, Yasin JK, Pillai MA (2021) Loss of function of OsFBX267 and OsGA20ox2 in rice promotes early maturing and semi-dwarfism in γ-irradiated IWP and genome-edited Pusa Basmati-1. Front Plant Sci 12:714066. https://doi.org/10.3389/fpls.2021.714066

    Article  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR the for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg, pp 239–258

    Chapter  Google Scholar 

  • Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HS, Yuan W, Xu W, Zhang Q (2022) Mechanisms of abscisic acid-mediated drought stress responses in plants. Int J Mol Sci 23(3):1084

    Article  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero JL, Verderzco CV, Galam J, Jimenez ESD (2005) Proline accumulation as a symptom of water stress in maize: a tissue differentiation requirement. J Exp Bot 39:889–897

    Article  Google Scholar 

  • Chanu WS, Sarangthem K (2015) Changes in proline accumulation, amino acid, sugar and chlorophyll content in leaf and culm of Phourel-amubi, a rice cultivar of Manipur in response to flash flood. Ind J Plant Physiol 20:10–13

    Article  Google Scholar 

  • Chaudhry S, Sidhu S (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • Chen CT, Kao CH (1993) Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regul 13:197–202

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Chirag M, Mawlong I, Tyagi A (2022) Role of apetela2 (AP2)/ERF family transcription factors in stress-responsive gene expression. Response of field crops to abiotic stress. CRC Press, Boca Raton, pp 191–209

    Chapter  Google Scholar 

  • Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK (2022) Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta 255:68. https://doi.org/10.1007/s00425-022-03845-y

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoSONE 11:e0156362

    Article  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17(1):268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWald DB, Torabinejad J, Jones CA, Shope JC, Canjelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-biphosphate, and inositol 1,4,5-triphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:159–172

    Article  Google Scholar 

  • Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 18(1):13

    Google Scholar 

  • Ding YL, Shi YT, Yang SH (2020) Molecular regulation of plant responses to environmental temperatures. Mol Plant 13:544–564

    Article  CAS  PubMed  Google Scholar 

  • FAO. 2021. Statistical year book, Land use. Rome. http://www.fao.org/faostat/en/#data/RL.

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in prospect ? Plant Cell Environ 39:951–964. https://doi.org/10.1111/pce.12621

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462(7273):660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavassi MA, Alves FR, Carvalho RF (2023) Phytochrome and hormone signaling crosstalk in response to abiotic stresses in plants. Plant hormones and climate change. Springer, Singapore, pp 145–165

    Chapter  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828

    Article  CAS  Google Scholar 

  • Ghosh S, Bheri M, Bisht D, Pandey GK (2022) Calcium signaling and transport machinery: potential for development of stress tolerance in plants. Curr Plant Biol 29:100235. https://doi.org/10.1016/j.cpb.2022.100235

    Article  CAS  Google Scholar 

  • Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjindali A, Johnson GN (2023) Photosynthetic acclimation to changing environments. Biochem Soc Trans 51:473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Zhang J, Zhang N, Xin M, Peng H, Hu Z, Ni Z, Du J (2015) The Wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoSONE 10:e0135667

    Article  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JH, Savina M, Du J, Devendran A, Ramakanth KK, Tian X, Sim WS, Mironova VV, Xu J (2017) A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170(1):102–113

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  Google Scholar 

  • Hotamisligil GS, Davis RJ (2016) Cell signaling and stress responses. Cold Spring Harb Perspect Biol 8(10):a006072. https://doi.org/10.1101/cshperspect.a006072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the arabidopsis C –repeat /dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chen X, Shen X (2022) Regulatory network established by transcription factors transmits drought stress signals in plant. Stress Biol 2:26. https://doi.org/10.1007/s44154-022-00048-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  • IAEA (2021) www.iaea.org.newscentre/news/

  • Imran QM, Falak N, Hussain A, Mun BG, Yun BW (2021) Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11:1579

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cisepoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamla M, Khare T, Joshi S, Patil S, Suprasanna P, Kumar V (2021) Omics approaches for understanding heavy metal responses and tolerance in plants. Curr Plant Biol. https://doi.org/10.1016/j.cpb.2021.100213

    Article  Google Scholar 

  • Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC (2023) Auxin and abiotic stress responses. J Exp Bot. https://doi.org/10.1093/jxb/erad325

    Article  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2010) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 1:7

    Google Scholar 

  • Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Ganie SA, Wani SH, Rajasheker G, Karumanchi AR, Sujatha E, Jalaja N, Kumar V, Rathnagiri P, Suravajhala P, Suprasanna P (2022) Nuclear factor-Y (NF-Y): developmental and stress-responsive roles in the plant lineage. Jour Plant Growth Reg 42:2711–2735

    Article  Google Scholar 

  • Kim JS, Jeon BW, Kim J (2021) Signaling peptides regulating abiotic stress responses in plants. Front Plant Sci 12:704490. https://doi.org/10.3389/fpls.2021.704490

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobrinsky E, Mirshani T, Zhang H, Jin T, Longothesis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+ -current desensitisation. Nat Cell Biol 2:507–514

    Article  CAS  PubMed  Google Scholar 

  • Koenig AM, Hoffmann-Benning S (2020) The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep. https://doi.org/10.1042/BSR20193329

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19(10):3206. https://doi.org/10.3390/ijms19103206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Jeevaraj T, Yunus MH, Chakraborty S, Chakraborty N (2023) The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant, Cell Environ 46:5–22

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING-finger protein that displays cold-regulated nucleo cytoplasmic partitioning. Genes Dev 15:912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 115(5):687–696

    Google Scholar 

  • Li M, Berendzen KW, Schoffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73:559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang X, Cai Y, Wu J, Mo B, Yu E (2017) Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol Plantarum 39:1–9

    Article  Google Scholar 

  • Li P, Lu YJ, Chen H, Day B (2020) The lifecycle of the plant immune system. CRC Crit Rev Plant Sci 39(1):72–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Xiao X, Liu Q, Li W, Li L, Zhang W, Munnik T, Wang X, Zhang Q (2023) Dynamic responses of PA to environmental stimuli imaged by a genetically encoded mobilizable fluorescent sensor. Plant Commun 4(3):100500. https://doi.org/10.1016/j.xplc.2022.100500

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Huang Y, Liu C, Chen K, Li M (2023) Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biol J 25:361–378. https://doi.org/10.1111/plb.13507

    Article  CAS  Google Scholar 

  • Licausi F, DA KosmaczM W, Giuntoli B, Giorgi FM, Voesenek LACJ, Perata P, Van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479(7373):419–422

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, He S (2017) Transcription factor OsAP2-39 involved in the regulation of osmotic stress response of rice. Crop J 5(2):126–134

    Google Scholar 

  • Liu Y, Wei H, Ma M, Li Q, Kong D, Sun J, Ma X, Wang B, Chen C, Xie Y, Wang H (2019) Arabidopsis FHY3 and FAR1 regulate the balance between growth and defense responses under shade conditions. Plant Cell 29(12):2829–2846

    Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  PubMed  Google Scholar 

  • McManmon M, Crawford RM (1971) A metabolic theory of flooding tolerance: the significance of enzyme distribution and behavior. New Phytol 70:299–306

    Article  CAS  Google Scholar 

  • Mitra GN (2015) Calcium (Ca) uptake. Regulation of nutrient uptake by plants: a biochemical and molecular approach. Springer, India, pp 53–70

    Chapter  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2018) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Et Biophys Acta Gene Regul Mech 1:2–12

    Google Scholar 

  • Monk LS, Fagerstedt KV, Crawford RM (1987) Superoxide dismutase as an anaerobic polypeptide is a key factor in recovery from oxygen deprivation in Iris pseudacorus. Plant Physiol 85:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13:143–160

    Article  Google Scholar 

  • Mustroph A, Barding GA, Kaiser KA, Larive CK, Bailey-Serres J (2014) Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. Plant Cell Environ 37:2366–2380

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104(9):3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narendra T, Sarvajeet GS (2016) Abiotic stress signaling in plants—an overview. Wiley, Hoboken, pp 1–12

    Google Scholar 

  • Neha S, Inderjeet B, Abhishek K, Punit T, Girija S, Sakshi C, Yasin JK (2017) Stop the new gene, the alien: breakdown of transgenes and introgressions by ncRNA mediated gene regulations. J AgriSearch 4(2):133–40

    Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Ouyang H, Vogel HJ (1998) Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals 11(3):213–222

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Joshi R, Gupta KJ, Singla-Pareek SL, Foyer C (2020) Sensing and signalling in plant stress responses: ensuring sustainable food security in an era of climate change. New Phytol 228:823–827. https://doi.org/10.1111/nph.16893

    Article  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signaling. Mol Plant 2:120–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polle A, Schutzendubel A (2004) Heavy metal signaling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress, vol 4. Topics in Current Genetics. Springer, Berlin, pp 187–215

    Chapter  Google Scholar 

  • Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41(8):1209–1232

    Article  PubMed  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 12:1–28

    Google Scholar 

  • Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, Anwar S, Sharifi S, Lu G, Siddique KH (2023a) Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress 23:100152

    Article  Google Scholar 

  • Raza A, Charagh S, Salehi H, Abbas S, Saeed F, Poinern GE, Siddique KH, Varshney RK (2023b) Nano-enabled stress-smart agriculture: can nanotechnology deliver drought and salinity-smart crops? J Sustain Agric Environ 2(3):189–214

    Article  Google Scholar 

  • Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen ZH, Siddique KH, Zhuang W, Varshney RK (2023c) Developing drought-smart, ready-to-grow future crops. The Plant Genome 16(1):e20279

    Article  PubMed  Google Scholar 

  • Raza A, Wang D, Zou X, Prakash CS (2023d) Developing temperature-resilient plants: a matter of present and future concern for sustainable agriculture. Agronomy 13(4):1006. https://doi.org/10.3390/agronomy13041006

    Article  Google Scholar 

  • Ren CG, Chen Y, Dai CC (2014) Cross-talk between calcium-calmodulin and brassinolide for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. J Plant Growth Regul 33:285–294. https://doi.org/10.1007/s00344-013-9370-4

    Article  CAS  Google Scholar 

  • Ren S, Ma K, Lu Z, Chen G, Cui J, Tong P, Wang L, Teng N, Jin B (2019) Transcriptomic and metabolomic analysis of the heat-Stress response of Populus tomentosa Carr. Forests 10:383

    Article  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena RC (2009) Water-logging induced oxidative stress and antioxidant enzymes activity in pigeon pea. Biol Plant 53:493–504

    Article  CAS  Google Scholar 

  • Saini N, Nikalje GC, Zargar, SM, Penna S (2022) Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Rep 41:799–813

    CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18(5):1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasidharan R, Voesenek LA (2015) Ethylene-mediated acclimations to flooding stress. Plant Physiol 169:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M et al (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Takasaki H, Takahashi F, Suzuki T, Iuchi S, Mitsuda N et al (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci USA 115(47):E11178–E11187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function, and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Ni FT, Guo DG, Li H, Li WX (2010) Perspective on phytoremediation for improving heavy metal contaminated soils. In: Ashraf M, Ozturk M, Ahmad M (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 227–244

    Chapter  Google Scholar 

  • Singh A, Roychoudhury A (2023) Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Rep 42:1–14

    Article  Google Scholar 

  • Singh S, Modi MK, Gill SS, Tuteja N (2012) Rice: genetic engineering approaches for abiotic stress tolerance–retrospects and prospects. Improving crop productivity in sustainable agriculture. Wiley, Hoboken, pp 201–236

    Chapter  Google Scholar 

  • Singh N, Bhogal I, Mishra BK, Yasin JK (2016) Carbonic anhydrase genes network: key role players in pH flux and abiotic stress tolerance. J Agric Search 3(4):8

    Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interaction with CBF1, a transcriptional activator involved in cold regulated gene expression. Nucleic Acid Res 29:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66:844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, KondoY DN et al (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signaling. Nature 556(7700):235–238

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: from cellular responses to long distance intercellular communication. Front Plant Sci 11:556972

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewari S, Arora NK (2013) Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability. Clim Change Environ Sustain 1:95–103

    Article  Google Scholar 

  • Tewari S, Arora NK (2016) Soybean production under flooding stress and its mitigation using plant growth promoting microbes. Environ Stresses Soybean Prod 14:2–23

    Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) A molecular mechanistic model of plant heavy metal tolerance. Biometals 25(3):489–505

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16:647–653

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang X, Li W, Li M, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspect of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152(3):1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Liu Y, Liu S, Li C, Zhao Y, Li L, Lu S (2020) Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China. Chemosphere 250:126289. https://doi.org/10.1016/j.chemosphere.2020.126289

    Article  CAS  PubMed  Google Scholar 

  • Yao HY, Xue HW (2018) Phosphatidic acid plays key roles regulating plant development and stress responses. J Integr Plant Biol 60:851–863

    Article  CAS  PubMed  Google Scholar 

  • Yasin JK (2015) Intra cellular pH flux and cyclosis in plant cells under abiotic stress. J Agric Search 2(2):150–151

    Google Scholar 

  • Yasin JK, Singh AK (2019) Intracellular trafficking and cytoplasmic streaming under abiotic stress conditions. J Agric Search. https://doi.org/10.21921/jas.v6i04.16894

    Article  Google Scholar 

  • Yasin JK, Nizar MA, Rajkumar S, Verma M, Radhamani J, Verma N, Pandey S (2014) Alternate antioxidant defence system in moisture stress responsive accessions of horse gram. Legum Res 37(2):145–154

    Article  Google Scholar 

  • Yasin JK, Mishra BK, Pillai MA, Nidhi Verma SH, Wani HO, Elansary DO, El-Ansary PS, Pandey VC (2020) Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions. Sci Rep 10:17203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin JK, Mishra BK, Pillai MA, Chinnusamy V (2021) Physical map of lncRNAs and lincRNAs linked with stress responsive miRs and genes network of pigeonpea (Cajanus cajan L.). J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-021-00674-0

    Article  Google Scholar 

  • Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y (2023) The dynamics of H2A.Z on SMALL AUXIN UP RNAs regulate abscisic acid–auxin signaling crosstalk in Arabidopsis. J Exp Botany 74:4158

    Article  CAS  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2015) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 82(2):1–13

    Google Scholar 

  • Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42(3):1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhu J, Gong Z et al (2022) Abiotic stress responses in plants. Nat Rev Genet 23:104–119

    Article  PubMed  Google Scholar 

  • Zhao J, Lu Z, Wang L, Jin B (2021) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22:117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their respective institutions.

Funding

This work was partially supported by the Indian Council of Agricultural Research—National Bureau of Plant Genetic Resources [PGR/DFP-BUR-DEL-01.01].

Author information

Authors and Affiliations

Authors

Contributions

YJK conceived the idea, YJK, SS, MS, VK, MAP, SHW, and SP wrote the MS.

Corresponding author

Correspondence to Jeshima Khan Yasin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Abidur Rahman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakespear, S., Sivaji, M., Kumar, V. et al. Navigating Through Harsh Conditions: Coordinated Networks of Plant Adaptation to Abiotic Stress. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-023-11224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-023-11224-4

Keywords

Navigation