Skip to main content
Log in

Transcriptional and Post-transcriptional Regulation of Tuberization in Potato (Solanum tuberosum L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The transition from juvenile to adult stage is an important switch in the plant’s life cycle. Potato is a temperate staple food crop consumed globally. Potato tuberization is influenced by various environmental factors, such as light and temperature. The complex signaling network comprising hormones, sugars, phloem mobile signals, and transcriptional/post-transcriptional regulators determine potato tuber yield. For instance, StBEL5 and StSP6A translocate from leaves to stolon to activate tuberization. Here, polypyrimidine tract-binding proteins and sugar transporters such as SUT and SWEET11 facilitate the translocation. Additionally, post-transcriptional regulation mediated by miRNAs and small RNAs control the expression of StSP6A under elevated temperatures. This review provides mechanistic insights into the signaling networks comprising transcriptional and post-transcriptional regulators that coordinate potato tuberization under photoperiod regimes and high-temperature conditions. Such signaling networks are under dynamic genetic and epigenetic regulation controlling potato tuberization. Also, the molecular dialogue between the source and sink tissues is highlighted. Such mechanistic information is crucial to develop climate-resilient cultivars to sustain potato productivity under changing climate. Together, genetic manipulation of these critical regulators by implementing modern biotechnological tools can be a promising approach to enhance tuber production in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abelenda J, Prat S (2013) Cytokinins: determinants of sink storage ability. Curr Biol 23(13):R561–R563

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Navarro C, Prat S (2011) From the model to the crop: genes controlling tuber formation in potato. Curr Opin Biotechnol 22(2):287–292

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Navarro C, Prat S (2014) Flowering and tuberization: a tale of two nightshades. Trends Plant Sci 19(2):115–122

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S (2016) Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol 26(7):872–881

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RG, Sonnewald U, Bachem CW (2019) Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Curr Biol 29(7):1178-1186 e1176

    CAS  PubMed  Google Scholar 

  • Abeytilakarathna P (2022) Factors affect to stolon formation and tuberization in potato: a review. Agric Rev 43(1):91–97

    Google Scholar 

  • Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N (2008) Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 7(9):3803–3817

    CAS  PubMed  Google Scholar 

  • Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S (2013) Comparative proteomics reveals a role for seed storage protein Am A1 in cellular growth, development, and nutrient accumulation. J Proteome Res 12(11):4904–4930

    CAS  PubMed  Google Scholar 

  • Ahmad A, Ghouri MZ, Munawar N, Ismail M, Ashraf S, Aftab SO (2021) Regulatory, ethical, and social aspects of CRISPR crops. CRISPR crops. Springer, Berli, pp 261–287

    Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ai Y, Jing S, Cheng Z, Song B, Xie C, Liu J, Zhou J (2021) DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways. Hortic Res. https://doi.org/10.1038/s41438-021-00619-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Aksenova N, Konstantinova T, Lozhnikova V, Golyanovskaya S, Sergeeva L (2009) Interaction between day length and phytohormones in the control of potato tuberization in the in vitro culture. Russ J Plant Physiol 56:454–461

    CAS  Google Scholar 

  • Aksenova NP, Sergeeva LI, Kolachevskaya OO, Romanov GA (2014) Hormonal regulation of tuber formation in potato. Bulbous plants: biotechnology Taylor. Francis Group, Boca Raton, pp 3–36

    Google Scholar 

  • Aliche EB, Theeuwen TP, Oortwijn M, Visser RG, van der Linden CG (2020) Carbon partitioning mechanisms in potato under drought stress. Plant Physiol Biochem 146:211–219

    CAS  PubMed  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ-Sci 23(2):139–150

    Google Scholar 

  • Amador V, Monte E, Garcı́a-Martı́nez J-L, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106(3):343–354

    CAS  PubMed  Google Scholar 

  • Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4(3):377–394

    CAS  PubMed  Google Scholar 

  • Bach S, Yada RY, Bizimungu B, Sullivan JA (2012) Genotype by environment interaction effects on fibre components in potato (Solanum tuberosum L.). Euphytica 187(1):77–86

    Google Scholar 

  • Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E (2014) Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 32(1):87–106

    CAS  PubMed  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18(12):3443–3457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee AK, Lin T, Hannapel DJ (2009) Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol 151(4):1831–1843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152(3):1471–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrell PJ, Meiyalaghan S, Jacobs JM, Conner AJ (2013) Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J 11(8):907–920

    CAS  PubMed  Google Scholar 

  • Bartel DP, Chen C-Z (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400

    CAS  PubMed  Google Scholar 

  • Batutis EJ, Ewing EE (1982) Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol 69(3):672–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begum S, Jing S, Yu L, Sun X, Wang E, Abu Kawochar M, Qin J, Liu J, Song B (2022) Modulation of JA signalling reveals the influence of StJAZ1-like on tuber initiation and tuber bulking in potato. Plant J 109(4):952–964

    CAS  PubMed  Google Scholar 

  • Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK (2014) MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol 164(2):1011–1027

    CAS  PubMed  Google Scholar 

  • Birch PR, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security 4(4):477–508

    Google Scholar 

  • Bodlaender K, Lugt C, Marinus J (1964) The induction of second-growth in potato tubers. Eur Potato J 7(1):57–71

    Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18(1):30–40

    CAS  PubMed  Google Scholar 

  • Bou-Torrent J, Martínez-García JF, García-Martínez JL, Prat S (2011) Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS ONE 6(9):e24458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19(8):2544–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bukovnik U, Fu J, Bennett M, Prasad PV, Ristic Z (2009) Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1α, in spring wheat. Funct Plant Biol 36(3):234–241

    CAS  PubMed  Google Scholar 

  • Bürglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25(21):4173–4180

    PubMed  PubMed Central  Google Scholar 

  • Butler NM, Hannapel DJ (2012) Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues. Planta 236:1747–1755

    CAS  PubMed  Google Scholar 

  • Campbell R, Ducreux L, Cowan G, Young V, Chinoko G, Chitedze G, Kwendani S, Chiipanthenga M, Bita CE, Mwenye O (2022) Allelic variants of a potato HEAT SHOCK COGNATE 70 gene confer improved tuber yield under a wide range of environmental conditions. Food Energy Sec. https://doi.org/10.1002/fes3.377

    Article  Google Scholar 

  • Cao D, Lin Z, Huang L, Damaris RN, Li M, Yang P (2021) A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization. Planta 253:1–11

    Google Scholar 

  • Carrera E, Bou J, García-Martínez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22(3):247–256

    CAS  PubMed  Google Scholar 

  • Chailakhyan M, LI Y, AG D, GN L (1981) Photoperiodism and tuber formation in graftings of tobacco onto potato.

  • Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132(3):1391–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, Guo W-J, Kim J-G, Underwood W, Chaudhuri B (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335(6065):207–211

    CAS  PubMed  Google Scholar 

  • Chen L-Q, Lin IW, Qu X-Q, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27(3):607–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Cheng L, Wang D, Wang Y, Xue H, Zhang F (2020) An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro. Physiol Plant 168(3):675–693

    CAS  PubMed  Google Scholar 

  • Chincinska IA, Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146(2):515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SK, Sharma P, Butler NM, Kang I-H, Shah S, Rao AG, Hannapel DJ (2015) Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA. J Exp Bot 66(21):6835–6847

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer AH, van Kleeff PJ, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250:425–440

    CAS  PubMed  Google Scholar 

  • Dutt S, Manjul AS, Raigond P, Singh B, Siddappa S, Bhardwaj V, Kawar PG, Patil VU, Kardile HB (2017) Key players associated with tuberization in potato: potential candidates for genetic engineering. Crit Rev Biotechnol 37(7):942–957

    CAS  PubMed  Google Scholar 

  • Dutta M, Raturi V, Gahlaut V, Kumar A, Sharma P, Verma V, Gupta VK, Sood S, Zinta G (2022) The interplay of DNA methyltransferases and demethylases with tuberization genes in potato (Solanum tuberosum L.) genotypes under high temperature. Front Plant Sci. https://doi.org/10.3389/fpls.2022.933740

    Article  PubMed  PubMed Central  Google Scholar 

  • Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, Amsellem Z, Eshed Y, Lifschitz E (2013) A cytokinin-activating enzyme promotes tuber formation in tomato. Curr Biol 23(12):1057–1064

    CAS  PubMed  Google Scholar 

  • Ewing EE (1995) The role of hormones in potato (d L.) tuberization. Plant Hormones. https://doi.org/10.1007/978-94-011-0473-9_32

    Article  Google Scholar 

  • Fixen K, Thomas S, Tong C (2012) Blue light inhibition of tuberization in a day-neutral potato. J Plant Growth Regul 31(3):342–350

    CAS  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63(4):1637–1661

    CAS  PubMed  Google Scholar 

  • Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184(6):1621–1635

    CAS  PubMed  Google Scholar 

  • Garg V, Hackel A, Kühn C (2021) Expression level of mature miR172 in wild type and StSUT4-silenced plants of Solanum tuberosum is sucrose-dependent. Int J Mol Sci 22(3):1455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S (2022) Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells 11(8):1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geer LA, Weedon J, Bell ML (2012) Ambient air pollution and term birth weight in texas from 1998 to 2004. J Air Waste Manag Assoc 62(11):1285–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci 109(8):3167–3172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghate TH, Sharma P, Kondhare KR, Hannapel DJ, Banerjee AK (2017) The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. Plant Mol Biol 93:563–578

    CAS  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8(1):93–102

    CAS  PubMed  Google Scholar 

  • González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70(4):678–690

    PubMed  Google Scholar 

  • Guan Y-F, Huang X-Y, Zhu J, Gao J-F, Zhang H-X, Yang Z-N (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147(2):852–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halford NG (2009) New insights on the effects of heat stress on crops. J Exp Bot 60(15):4215–4216

    CAS  PubMed  Google Scholar 

  • Ham B-K, Brandom JL, Xoconostle-Cazares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21(1):197–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE (2014) Physiological, biochemical and molecular responses of the potato (S olanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 37(2):439–450

    CAS  PubMed  Google Scholar 

  • Hannapel DJ (2007) Signalling the induction of tuber formation. Potato biology and biotechnology. Elsevier, Amsterdam, pp 237–256

    Google Scholar 

  • Hannapel DJ, Sharma P, Lin T, Banerjee AK (2017) The multiple signals that control tuber formation. Plant Physiol 174(2):845–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S (2011) Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol 155(2):776–796

    CAS  PubMed  Google Scholar 

  • Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S (2018) Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environ 41(11):2600–2616

    CAS  PubMed  Google Scholar 

  • Hawkes JG (1992) History of the potato. The potato crop. Springer, Dordrecht, pp 1–12

    Google Scholar 

  • He W, Pu M, Li J, Xu Z-G, Gan L (2021) Potato tuber growth and yield under red and blue LEDs in plant factories. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10277-z

    Article  Google Scholar 

  • He F, Duan S, Jian Y, Xu J, Hu J, Zhang Z, Lin T, Cheng F, Li G (2022) Genome-wide identification and gene expression analysis of the 14–3–3 gene family in potato (Solanum tuberosum L.). BMC Genomics 23(1):1–16

    Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80(4):271–279

    Google Scholar 

  • Hu Y, Zhao L, Chong K, Wang T (2008) Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. J Plant Physiol 165(16):1717–1725

    CAS  PubMed  Google Scholar 

  • Huang H, Liu R, Niu Q, Tang K, Zhang B, Zhang H, Chen K, Zhu J-K, Lang Z (2019) Global increase in DNA methylation during orange fruit development and ripening. Proc Natl Acad Sci 116(4):1430–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Zheng C, Zhao Y, Li Q, Liu J, Deng R, Lei T, Wang S, Wang X (2021) RNA interference knockdown of the brassinosteroid receptor BRI1 in potato (Solanum tuberosum L.) reveals novel functions for brassinosteroid signaling in controlling tuberization. Scientia Horticulturae 290:110516

    CAS  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426(6964):302–306

    CAS  PubMed  Google Scholar 

  • Jackson SD, Heyer A, Dietze J, Prat S (1996) Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J 9(2):159–166

    CAS  Google Scholar 

  • Jackson SD, James P, Prat S, Thomas B (1998) Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol 117(1):29–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SD, James PE, Carrera E, Prat S, Thomas B (2000) Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol 124(1):423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen G, Flamme W, Schüler K, Vandrey M (2001) Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Res 44:137–146

    CAS  Google Scholar 

  • Jing S, Sun X, Yu L, Wang E, Cheng Z, Liu H, Jiang P, Qin J, Begum S, Song B (2022) Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiol 189(3):1677–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jing S, Jiang P, Sun X, Yu L, Wang E, Qin J, Zhang F, Prat S, Song B (2023) Long-distance control of potato storage organ formation by SELF PRUNING 3D and FLOWERING LOCUS T-like 1. Plant Commun 4:100547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27(2):470–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Tabb P, Hepworth SR (2012) BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1. Plant Signal Behav 7(7):788–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RG, Bachem CW (2007) StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J 52(2):362–373

    CAS  PubMed  Google Scholar 

  • Kloosterman B, Abelenda JA, Gomez MdMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495(7440):246–250

    CAS  PubMed  Google Scholar 

  • Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T (1991) Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry 30(5):1435–1438

    CAS  Google Scholar 

  • Kolachevskaya OO, Alekseeva VV, Sergeeva LI, Rukavtsova EB, Getman IA, Vreugdenhil D, Buryanov YI, Romanov GA (2015) Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro. J Integr Plant Biol 57(9):734–744

    CAS  PubMed  Google Scholar 

  • Kondhare KR, Vetal PV, Kalsi HS, Banerjee AK (2019) BEL1-like protein (StBEL5) regulates CYCLING DOF FACTOR1 (StCDF1) through tandem TGAC core motifs in potato. J Plant Physiol 241:153014

    CAS  PubMed  Google Scholar 

  • Kondhare KR, Kumar A, Patil NS, Malankar NN, Saha K, Banerjee AK (2021) Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiol 187(3):1071–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehner JN, Yao B (2019) The dynamic partnership of polycomb and trithorax in brain development and diseases. Epigenomes 3(3):17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn C, Hajirezaei M-R, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, Frommer WB (2003) The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol 131(1):102–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kondhare KR, Vetal PV, Banerjee AK (2020) PcG proteins MSI1 and BMI1 function upstream of miR156 to regulate aerial tuber formation in potato. Plant Physiol 182(1):185–203

    CAS  PubMed  Google Scholar 

  • Kumar A, Kondhare KR, Malankar NN, Banerjee AK (2021) The Polycomb group methyltransferase StE (z) 2 and deposition of H3K27me3 and H3K4me3 regulate the expression of tuberization genes in potato. J Exp Bot 72(2):426–444

    CAS  PubMed  Google Scholar 

  • Lafta AM, Lorenzen JH (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol 109(2):637–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354(6314):897–900

    CAS  PubMed  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LV, Koistinen KM, Massat N, Nunan N, McNicol JW, Kärenlampi SO (2006) Proteomic analysis of the potato tuber life cycle. Proteomics 6(22):6042–6052

    CAS  PubMed  Google Scholar 

  • Lehretz GG, Sonnewald S, Hornyik C, Corral JM, Sonnewald U (2019) Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol 29(10):1614-1624 e1613

    CAS  PubMed  Google Scholar 

  • Lehretz GG, Sonnewald S, Lugassi N, Granot D, Sonnewald U (2021a) Future-proofing potato for drought and heat tolerance by overexpression of hexokinase and SP6A. Front Plant Sci 11:614534

    PubMed  PubMed Central  Google Scholar 

  • Lehretz GG, Sonnewald S, Sonnewald U (2021) Assimilate highway to sink organs–physiological consequences of SP6A overexpression in transgenic potato (Solanum tuberosum L.). J Plant Physiol 266:153530

    CAS  PubMed  Google Scholar 

  • Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    CAS  PubMed  Google Scholar 

  • Lin T, Sharma P, Gonzalez DH, Viola IL, Hannapel DJ (2013) The impact of the long-distance transport of a BEL1-like messenger RNA on development. Plant Physiol 161(2):760–772

    CAS  PubMed  Google Scholar 

  • Lin IW, Sosso D, Chen L-Q, Gase K, Kim S-G, Kessler D, Klinkenberg PM, Gorder MK, Hou B-H, Qu X-Q (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508(7497):546–549

    CAS  PubMed  Google Scholar 

  • Liu J, Pang X, Cheng Y, Yin Y, Zhang Q, Su W, Hu B, Guo Q, Ha S, Zhang J (2018) The Hsp70 gene family in Solanum tuberosum: genome-wide identification, phylogeny, and expression patterns. Sci Rep 8(1):1–11

    Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H-Q, Luan S, Li J, He Z-H (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci 110(38):15485–15490

  • Lloyd JR, Kossmann J (2015) Transitory and storage starch metabolism: two sides of the same coin? Curr Opin Biotechnol 32:143–148

    CAS  PubMed  Google Scholar 

  • Lomin SN, Myakushina YA, Kolachevskaya OO, Getman IA, Savelieva EM, Arkhipov DV, Deigraf SV, Romanov GA (2020) Global view on the cytokinin regulatory system in potato. Front Plant Sci 11:613624

    PubMed  PubMed Central  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM (2013) The plant vascular system: evolution, development and functions f. J Integr Plant Biol 55(4):294–388

    CAS  PubMed  Google Scholar 

  • Lumsden PJ, Millar AJ (1998) Biological rhythms and photoperiodism in plants. Bios Scientific Publishers, Milton Park

    Google Scholar 

  • Ma S, Li Y, Li X, Sui X, Zhang Z (2019) Phloem unloading strategies and mechanisms in crop fruits. J Plant Growth Regul 38:494–500

    CAS  Google Scholar 

  • Macintosh GC, Ulloa RM, Raíces M, Tellez-Inon MT (1996) Changes in calcium-dependent protein kinase activity during in vitro tuberization in potato. Plant Physiol 112(4):1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan A, Bhogale S, Kang IH, Hannapel DJ, Banerjee AK (2012) The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Mol Biol 79:595–608

    CAS  PubMed  Google Scholar 

  • Mali S, Dutta M, Zinta G (2022) Genome editing advancements in potato (Solanum tuberosum L.): operational challenges and solutions. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-022-00812-2

    Article  Google Scholar 

  • Mali S, Nayyar H, Rathour R, Sharma KD (2023) Genome wide identification and expression profiling of Early responsive to dehydration 6 (ERD6)-like gene family in chickpea (Cicer arietinum L.). Plant Gene 34:100411

    CAS  Google Scholar 

  • Mann RS, Chan S-K (1996) Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet 12(7):258–262

    CAS  PubMed  Google Scholar 

  • Martin A, Adam H, Díaz-Mendoza M, Zurczak M, González-Schain ND, Suárez-López P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136(17):2873–2881

    CAS  PubMed  Google Scholar 

  • Martínez-García JF, Virgós-Soler A, Prat S (2002) Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci 99(23):15211–15216

    PubMed  PubMed Central  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol, B 137:116–126

    CAS  PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41(9):1002–1012

    CAS  PubMed  Google Scholar 

  • Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514

    CAS  PubMed  Google Scholar 

  • McCallister C, Siracusa MC, Shirazi F, Chalkia D, Nikolaidis N (2015) Functional diversification and specialization of cytosolic 70-kDa heat shock proteins. Sci Rep 5(1):1–11

    Google Scholar 

  • Meng F-R, Li Y-C, Yin J, Liu H, Chen X-J, Ni Z-F, Sun Q-X (2012) Analysis of DNA methylation during the germination of wheat seeds. Biol Plant 56(2):269–275

    CAS  Google Scholar 

  • Meng L, Zhang T, Chen Y, Zhang Y, Wang X, Qin J, Meng M (2020) The influence of endogenous sugar on potato tuberization in in vivo conditions. Am J Potato Res 97:297–307

    CAS  Google Scholar 

  • Morales D, Rodríguez P, Dell’Amico J, Nicolas E, Torrecillas A, Sánchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47(2):203–208

    Google Scholar 

  • Morris WL, Hancock RD, Ducreux LJM, Morris JA, Usman M, Verrall SR, Sharma SK, Bryan G, McNicol JW, Hedley PE (2014) Day length dependent restructuring of the leaf transcriptome and metabolome in potato genotypes with contrasting tuberization phenotypes. Plant, Cell Environ 37(6):1351–1363

    CAS  PubMed  Google Scholar 

  • Morris WL, Ducreux LJ, Morris J, Campbell R, Usman M, Hedley PE, Prat S, Taylor MA (2019) Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. J Exp Bot 70(20):5703–5714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Rober B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO Jl-Eur Mol Biol Organ. https://doi.org/10.1002/j.1460-2075.1992.tb05167.x

    Article  Google Scholar 

  • Muñiz García MN, Stritzler M, Capiati DA (2014) Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation. Planta 239:615–631

    PubMed  Google Scholar 

  • Natarajan B, Bhogale S, Banerjee AK (2017) The essential role of microRNAs in potato tuber development: a mini review. Indian J Plant Physiol 22:401–410

    CAS  Google Scholar 

  • Natarajan B, Kondhare KR, Hannapel DJ, Banerjee AK (2019) Mobile RNAs and proteins: prospects in storage organ development of tuber and root crops. Plant Sci 284:73–81

    CAS  PubMed  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478(7367):119–122

    CAS  PubMed  Google Scholar 

  • Nicolas M, Torres-Perez R, Wahl V, Cruz-Oró E, Rodríguez-Buey ML, Zamarreño AM, Martín-Jouve B, García-Mina JM, Oliveros JC, Prat S (2022) Spatial control of potato tuberization by the TCP transcription factor BRANCHED1b. Nature Plants 8(3):281–294

    CAS  PubMed  Google Scholar 

  • Niu Y, Li G, Jian Y, Duan S, Liu J, Xu J, Jin L (2022) Genes related to circadian rhythm are involved in regulating tuberization time in potato. Horticultural Plant Journal 8(3):369–380

    CAS  Google Scholar 

  • Nurminsky V, Stolbikov A, Pomortsev A, Perfileva A (2018) Expression of PR genes and genes of heat shock proteins of potato plants in vitro under infection with ring rot and heat stress. Biopolym Cell. https://doi.org/10.7124/bc.00096B

    Article  Google Scholar 

  • Pagnussat GC, Yu H-J, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19(11):3578–3592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer C, Smith O (1970) Effect of kinetin on tuber formation on isolated stolons of Solanum tuberosum L. cultured in vitro. Plant Cell Physiol 11(2):303–314

    CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12(17):1484–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-S, Park S-J, Kwon S-Y, Shin A-Y, Moon K-B, Park JM, Cho HS, Park SU, Jeon J-H, Kim H-S (2022) Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Rep 38(13):110579

    CAS  PubMed  Google Scholar 

  • Pelacho AM, Mingo-Castel AM (1991) Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol 97(3):1253–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister B, Zeeman SC (2016) Formation of starch in plant cells. Cell Mol Life Sci 73:2781–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochimica et Biophysica Acta (BBA)-Gene Struct Exp 1769(56):375–382

    CAS  Google Scholar 

  • Prange RK, McRae KB, Midmore DJ, Deng R (1990) Reduction in potato growth at high temperature: role of photosynthesis and dark respiration. Am Potato J 67(6):357–369

    Google Scholar 

  • Pundir RK, Pathak A, Upadhyaya DC, Muthusamy A, Upadhyaya CP (2021) Red and Blue Light-Emitting Diodes Significantly Improve Tuberization of Potato (L). J Hortic Sci 29(1):95–108

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80(6):847–857

    CAS  PubMed  Google Scholar 

  • Ramírez Gonzales L, Shi L, Bergonzi SB, Oortwijn M, Franco-Zorrilla JM, Solano-Tavira R, Visser RG, Abelenda JA, Bachem CW (2021) Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. Plant J 105(4):855–869

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Falcon M, Bou J, Prat S (2006) Seasonal control of tuberization in potato: conserved elements with the flowering response. Annu Rev Plant Biol 57:151–180

    CAS  PubMed  Google Scholar 

  • Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367

    CAS  Google Scholar 

  • Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, Visser RG, Bachem CW (2012) The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J Exp Bot 63(12):4539–4547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roumeliotis E, Kloosterman B, Oortwijn M, Lange T, Visser RG, Bachem CW (2013a) Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics. J Plant Physiol 170(14):1228–1234

    CAS  PubMed  Google Scholar 

  • Roumeliotis E, Kloosterman B, Oortwijn M, Visser RG, Bachem CW (2013b) The PIN family of proteins in potato and their putative role in tuberization. Front Plant Sci 4:524

    PubMed  PubMed Central  Google Scholar 

  • Rutjens B, Bao D, Van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009) Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J 58(4):641–654

    CAS  PubMed  Google Scholar 

  • Saidi A, Hajibarat Z (2021) Phytohormones: plant switchers in developmental and growth stages in potato. J Genetic Eng Biotechnol 19(1):1–17

    Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190(3):556–565

    CAS  PubMed  Google Scholar 

  • Salaria N, Siddappa S, Thakur K, Tomar M, Goutam U, Sharma N, Sood S, Bhardwaj V, Singh B (2020) Solanum tuberosum (CYCLING DOF FACTOR) CDF1. 2 allele: a candidate gene for developing earliness in potato. S Afr J Bot 132:242–248

    CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

    CAS  PubMed  Google Scholar 

  • Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, Ulloa RM (2017) Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiol Plant 159(2):244–261

    CAS  PubMed  Google Scholar 

  • Sarkar D (2010) Photoperiodic inhibition of potato tuberization: an update. Plant Growth Regul 62(2):117–125

    CAS  Google Scholar 

  • Savic J, Dragicevic I, Pantelic D, Oljaca J, Momcilovic I (2012) Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Arch Biol Sci 64(1):135–144. https://doi.org/10.2298/abs1201135s

    Article  Google Scholar 

  • Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10(1):1–3

    Google Scholar 

  • Scheepers A, Joost H-G, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr 28(5):364–371

    CAS  Google Scholar 

  • Seibert T, Abel C, Wahl V (2020) Flowering time and the identification of floral marker genes in Solanum tuberosum ssp. andigena. J Exp Bot 71(3):986–996

    CAS  PubMed  Google Scholar 

  • Seo PJ, Park J-M, Kang SK, Kim S-G, Park C-M (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200

    CAS  PubMed  Google Scholar 

  • Ševčíková H, Mašková P, Tarkowská D, Mašek T, Lipavská H (2017) Carbohydrates and gibberellins relationship in potato tuberization. J Plant Physiol 214:53–63

    PubMed  Google Scholar 

  • Shah S, Hannapel DJ, Rao AG (2011) Biochemical and biophysical characterization of recombinantly expressed polypyrimidine tract binding (PTB) proteins from potato. Wiley Online Library, Hoboken

    Google Scholar 

  • Shah Z, Shah SH, Ali GS, Munir I, Khan RS, Iqbal A, Ahmed N, Jan A (2020) Introduction of Arabidopsis’s heat shock factor HsfA1d mitigates adverse effects of heat stress on potato (Solanum tuberosum L.) plant. Cell Stress Chaperones 25:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Lin T, Grandellis C, Yu M, Hannapel DJ (2014) The BEL1-like family of transcription factors in potato. J Exp Bot 65(2):709–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Lin T, Hannapel DJ (2016) Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiol 170(1):310–324

    CAS  PubMed  Google Scholar 

  • Sheikh FR, Jose-Santhi J, Kalia D, Singh K, Singh RK (2022) Sugars as the regulators of dormancy and sprouting in geophytes. Ind Crops Prod 189:115817

    CAS  Google Scholar 

  • Shekhar S, Mishra D, Gayali S, Buragohain AK, Chakraborty S, Chakraborty N (2016) Comparison of proteomic and metabolomic profiles of two contrasting ecotypes of sweetpotato (Ipomoea batata L.). J Proteomics 143:306–317

    CAS  PubMed  Google Scholar 

  • Shin M-S, Kim K-Y, Park H-S, Ko J-K (2011) Breeding for resistance to bacterial blight in rice. Korean J Breed Sci 43(4):251–261

    CAS  Google Scholar 

  • Šimko I (1994) Sucrose application causes hormonal changes associated with potato tuber induction. J Plant Growth Regul 13:73–77

    Google Scholar 

  • Smith HM, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 15(8):1717–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Jiang Y, Zhao H, Hou M (2012) Acquired thermotolerance in plants. Plant Cell Tissue Organ Culture (PCTOC) 111(3):265–276. https://doi.org/10.1007/s11240-012-0198-6

    Article  CAS  Google Scholar 

  • Song Q, Zhang T, Stelly DM, Chen ZJ (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18(1):1–14

    Google Scholar 

  • Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant–environment interactions. Annu Rev Plant Biol 70:489–525

    CAS  PubMed  Google Scholar 

  • Sonnewald U, Kossmann J (2013) Starches—from current models to genetic engineering. Plant Biotechnol J 11(2):223–232

    CAS  PubMed  Google Scholar 

  • Sowokinos JR (1976) Pyrophosphorylases in Solanum tuberosum: I. Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities associated with starch biosynthesis during tuberization, maturation, and storage of potatoes. Plant Physiol 57(1):63–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289(5480):768–771

    CAS  PubMed  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120

    PubMed  Google Scholar 

  • Sun A, Dai Y, Zhang X, Li C, Meng K, Xu H, Wei X, Xiao G, Ouwerkerk PB, Wang M (2011) A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M F. J Integr Plant Biol 53(7):586–595

    CAS  PubMed  Google Scholar 

  • Tang R, Zhu W, Song X, Lin X, Cai J, Wang M, Yang Q (2016) Genome-wide identification and function analyses of heat shock transcription factors in potato. Front Plant Sci 7:490

    PubMed  PubMed Central  Google Scholar 

  • Tang R, Gupta SK, Niu S, Li X-Q, Yang Q, Chen G, Zhu W, Haroon M (2020) Transcriptome analysis of heat stress response genes in potato leaves. Mol Biol Rep 47:4311–4321

    CAS  PubMed  Google Scholar 

  • Tao G-Q, Letham DS, Yong JW, Zhang K, John PC, Schwartz O, Wong SC, Farquhar GD (2010) Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Funct Plant Biol 37(1):43–54

    CAS  Google Scholar 

  • Tao Y, Cheung LS, Li S, Eom J-S, Chen L-Q, Xu Y, Perry K, Frommer WB, Feng L (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527(7577):259–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka K-i, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476(7360):332–335

    CAS  PubMed  Google Scholar 

  • Teo C-J, Takahashi K, Shimizu K, Shimamoto K, Taoka K-i (2017) Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol 58(2):365–374

    CAS  PubMed  Google Scholar 

  • Teo CJ (2016) Analysis of florigen function in potato tuberization.

  • Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8(3):359–377

    CAS  PubMed  Google Scholar 

  • Timlin D, Lutfor Rahman S, Baker J, Reddy V, Fleisher D, Quebedeaux B (2006) Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron J 98(5):1195–1203

    Google Scholar 

  • Trapero-Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L, Bryan GJ, Hancock RD, Taylor MA (2018) Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnol J 16(1):197–207. https://doi.org/10.1111/pbi.12760

    Article  CAS  PubMed  Google Scholar 

  • Ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci. https://doi.org/10.3390/ijms20215321

    Article  PubMed  PubMed Central  Google Scholar 

  • Ung N, Lal S, Smith HM (2011) The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol 156(2):605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM (2014) Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol 55(3):551–569

    CAS  PubMed  Google Scholar 

  • van den Herik B, Bergonzi S, Bachem CW, Ten Tusscher K (2021) Modelling the physiological relevance of sucrose export repression by an flowering time homolog in the long-distance phloem of potato. Plant Cell Environ 44(3):792–806

    PubMed  Google Scholar 

  • Van Harsselaar JK, Lorenz J, Senning M, Sonnewald U, Sonnewald S (2017) Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genomics 18(1):1–18

    Google Scholar 

  • Veramendi J, Roessner U, Renz A, Willmitzer L, Trethewey RN (1999) Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121(1):123–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501

    CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42(1):579–620

    CAS  Google Scholar 

  • Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ (2001) Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 13(2):385–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vreugdenhil D, Sergeeva LI (1999) Gibberellins and tuberization in potato. Potato Res 42:471–481

    CAS  Google Scholar 

  • Wahid A, Ghazanfar A (2006) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163(7):723–730

    CAS  PubMed  Google Scholar 

  • Wang L, Fujiwara S, Somers DE (2010) PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29(11):1903–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Liu T, Sun X, Jing S, Zhou T, Liu T, Song B (2022a) Profiling of the candidate interacting proteins of SELF-PRUNING 6A (SP6A) in Solanum tuberosum. Int J Mol Sci 23(16):9126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Zhou T, Jing S, Dong L, Sun X, Fan Y, Shen Y, Liu T, Song B (2022) Leaves and stolons transcriptomic analysis provide insight into the role of phytochrome F in potato flowering and tuberization. Plant J. https://doi.org/10.1111/tpj.16056

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18(11):2971–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056–1059

    CAS  PubMed  Google Scholar 

  • Winter N, Kragler F (2018) Conceptual and methodological considerations on mRNA and proteins as intercellular and long-distance signals. Plant Cell Physiol 59(9):1700–1713

    CAS  PubMed  Google Scholar 

  • Wolf S, Marani A, Rudich J (1991) Effect of temperature on carbohydrate metabolism in potato plants. J Exp Bot 42(5):619–625

    CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C (2017) Cis and trans determinants of epigenetic silencing by polycomb repressive complex 2 in Arabidopsis. Nat Genet 49(10):1546–1552

    CAS  PubMed  Google Scholar 

  • Xu X, van Lammeren AA, Vermeer E, Vreugdenhil D (1998) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117(2):575–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176(1):930–945

    CAS  PubMed  Google Scholar 

  • Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136

    PubMed  PubMed Central  Google Scholar 

  • Yang H, Chang F, You C, Cui J, Zhu G, Wang L, Zheng Y, Qi J, Ma H (2015) Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J 81(2):268–281

    CAS  PubMed  Google Scholar 

  • Yin K, Gao C, Qiu J-L (2017) Progress and prospects in plant genome editing. Nature Plants 3(8):1–6

    Google Scholar 

  • Yuan J, Cheng L, Li H, An C, Wang Y, Zhang F (2022) Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC Plant Biol 22(1):1–22

    Google Scholar 

  • Zaidi SS-e-A, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36(9):898–906

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhou W, Li H (2005) The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiol Plant 27:363–369

    CAS  Google Scholar 

  • Zhang G, Jin X, Li X, Zhang N, Li S, Si H, Rajora OP, Li X-Q (2022) Genome-wide identification of PEBP gene family members in potato, their phylogenetic relationships, and expression patterns under heat stress. Mol Biol Rep 49(6):4683–4697

    CAS  PubMed  Google Scholar 

  • Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q (2018) Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 19(1):1–13

    CAS  Google Scholar 

  • Zhou T, Song B, Liu T, Shen Y, Dong L, Jing S, Xie C, Liu J (2019) Phytochrome F plays critical roles in potato photoperiodic tuberization. Plant J 98(1):42–54

    CAS  PubMed  Google Scholar 

  • Zhu W, Li P, Xue C, Chen M, Wang Z, Yang Q (2021) Potato plants overexpressing SpHsfA4c exhibit enhanced tolerance to high-temperature stress. Russ J Plant Physiol 68(6):1208–1217

    CAS  Google Scholar 

Download references

Acknowledgements

MD acknowledges the support obtained from University Grant Commission (UGC) for the SRF fellowship; SM acknowledges the Department of Biotechnology (DBT-JRF); VR acknowledges UGC for SRF fellowship; and G.Z. acknowledges the support obtained from the projects funded by CSIR-FIRST (MLP-178) and DST Start-up Research Grant (SRG), SERB (GAP-294). Figs 2 and 3 are created with BioRender.com. This manuscript represents CSIR-IHBT publication number 5344.

Author information

Authors and Affiliations

Authors

Contributions

MD wrote the original manuscript draft with figures and table; SM and VR wrote the manuscript; GZ conceived the idea and then edited and finalized the manuscript.

Corresponding author

Correspondence to Gaurav Zinta.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Hamada AbdElgawad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, M., Mali, S., Raturi, V. et al. Transcriptional and Post-transcriptional Regulation of Tuberization in Potato (Solanum tuberosum L.). J Plant Growth Regul 43, 1–24 (2024). https://doi.org/10.1007/s00344-023-11053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11053-5

Keywords

Navigation