Skip to main content
Log in

Effect of Plasma-Activated Water Generated Using Plasma Jet on Tomato (Solanum lycopersicum L. var. cerasiforme) Seedling Growth

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seed survival and growth rate are major challenges in nursery farming. This paper proposes the widely applied plasma technology as a feasible solution. We investigated the effects of a mixed Ar–1% N2 plasma jet on tomato seed growth in plasma-activated water (PAW) containing NO3, NO2, and H2O2 ions. The optimal settings for the power, discharge duration, and gas flow rate of the plasma jet system were determined within the ranges of 10–20 min, 10–20 W, and 2–4 l/min, respectively. A full factorial design with center points and blocking was used. The optimal conditions to optimize the tomato weight were 20 W, 10 min, and 4 l/min, according to the empirical results and statistical analysis. The optimal PAW solution was used to treat the tomato seeds with our plasma jet system, and a 40.50% weight increase in the yield was obtained from three replications. These results indicate the effectiveness of the proposed system for fuel seed and plant growth in agricultural farming, indicating the potential of a scaled plasma jet technique for industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The relevant data and material pertinent to this research can be made available from the authors upon request.

Material Availability

The relevant data and material pertinent to this research can be made available from the authors upon request.

References

  • Ball SM, Langridge JM, Jones RL (2004) Broadband cavity enhanced absorption spectroscopy using light emitting diodes. Chem Phys Lett 398(1–3):68–74

    Article  CAS  Google Scholar 

  • Chang JL, Thompson JE (2010) Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmos Environ 44(4):541–551

    Article  CAS  Google Scholar 

  • El-Maarouf-Bouteau HAYAT, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38(2):364–374

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Liu X, Ma Y, Xiang Q (2020) Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J Tai Uni Sci 14(1):823–830

    Article  Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge, pp 848–961

    Google Scholar 

  • Intanon W, Vichiansan N, Leksakul K, Boonyawan D, Kumla J, Suwannarach N, Lumyong S (2021) Inhibition of the aflatoxin-producing fungus Aspergillus flavus by a plasma jet system. J Food Process Preserv 45(1):e15045

    Article  CAS  Google Scholar 

  • Jamil MT, Ahmad J, Bukhari SH, Mazhar ME, Nissar U, Raob AJ, Ahmad H, Murtaza G (2017) Atmospheric pressure glow discharge (APGD) plasma generation and surface modification of aluminum and silicon si (100). Dig J Nanomater Biostr 12(2):595–604

    Google Scholar 

  • Jiafeng J, Xin H, Ling LI, Jiangang L, Hanliang S, Qilai X, Renhong Y, Yuanhua D (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16(1):54

    Article  Google Scholar 

  • Jing C, Cheng ZHU, Li LP, Sun ZY, Pan XB (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19(1):44–49

    Article  Google Scholar 

  • Khan MN, Alamri S, Al-Amri AA, Alsubaie QD, Al-Munqedi B, Ali HM, Siddiqui MH (2021) Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. J Plant Growth Regul 40(6):2358–2370

    Article  CAS  Google Scholar 

  • Klinkong T (2019) Vegetable grafting in Thailand. II Int Symp Veg Graft 1302:1–44

    Google Scholar 

  • Kolbert Z, Feigl G, Freschi L, Poór P (2019) Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxi 8(6):167

    Article  CAS  Google Scholar 

  • Korachi M, Gurol C, Aslan N (2010) Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J Electrostat 68(6):508–512

    Article  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling adaptation to fluctuating environments. Curr Opin Plant Biol 13(3):265–272

    Article  Google Scholar 

  • Kruszelnicki J, Lietz AM, Kushner MJ (2019) Atmospheric pressure plasma activation of water droplets. J Phys D 52:355207

    Article  CAS  Google Scholar 

  • Lackmann JW, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Benedikt J, Bandow JE (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10(89):20130591

    Article  PubMed  PubMed Central  Google Scholar 

  • Leksakul K, Vichiansan N, Kaewkham P, Hattaphasu B, Boonyawan D (2021) Generating nitrate and nitrite on green oak lettuce in hydroponic farming by plasma system. Appl Eng Agric 37(1):105–112

    Article  Google Scholar 

  • Limsopatham K, Boonyawan D, Umongno C, Sukontason KL, Chaiwong T, Leksomboon R, Sukontason K (2017) Effect of cold argon plasma on eggs of the blow fly, Lucilia cuprina (Diptera: Calliphoridae). Acta Trop 176:173–178

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Chen J, Yang L, Zhou Y (2008) Long-distance oxygen plasma sterilization: effects and mechanisms. Appl Surf Sci 254(6):1815–1821

    Article  CAS  Google Scholar 

  • Liu CW, Sung Y, Chen B-C, Lai H-Y (2014) Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). Int J Environ Res Public Health 11:4427–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep 630:1–84. https://doi.org/10.1016/j.physrep.2016.03.003

    Article  CAS  Google Scholar 

  • Melgoza-Alemán L, Valdez-Aguilar A, Alia-Tejacal I (2014) Role of Nitrogen and Nutrients in Crop Nutrition. J Agric Sci Technol 4:29

    Google Scholar 

  • Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources. Int J Eng 2(1):53–68

    Google Scholar 

  • Okumura T, Saito Y, Takano K, Takahashi K, Takaki K, Satta N, Fujio T (2016) Inactivation of bacteria using discharge plasma under liquid fertilizer in a hydroponic culture system. Plasma Med 6(3–4):247

    Article  Google Scholar 

  • Reuter S, Winter J, Iseni S, Schmidt-Bleker A, Dunnbier M, Masur K, Wende K, Weltmann K-D (2015) The influence of feed gas humidity versus ambient humidity on atmospheric pressure plasma jet-effluent chemistry and skin cell viability. IEEE Trans Plasma Sci 43:3185–3192. https://doi.org/10.1109/TPS.2014.2361921

    Article  CAS  Google Scholar 

  • Roberts EH (1988) Temperature and seed germination. Symp Soc Exp Biol 42:109–132

    CAS  PubMed  Google Scholar 

  • Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, Roy NC, Hoque KMF, Talukder MR, Kabir AH, Reza MA (2020) Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem Plasma Process 40(1):119–143

    Article  CAS  Google Scholar 

  • Sarath G, Bethke PC, Jones R, Baird LM, Hou G, Mitchell RB (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223(6):1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694

    Article  CAS  Google Scholar 

  • Scott SJ, Jones RA, Williams W (1984) Review of data analysis methods for seed germination 1. Crop Sci 24(6):1192–1199

    Article  Google Scholar 

  • Stryczewska HD, Ebihara K, Takayama M, Gyoutoku Y, Tachibana M (2005) Non-thermal plasma-based technology for soil treatment. Plasma Processes Polym 2(3):238–245

    Article  CAS  Google Scholar 

  • Swann S (1988) Magnetron sputtering. Phys Technol 19(2):67

    Article  CAS  Google Scholar 

  • Takahata J, Takaki K, Satta N, Takahashi K, Fujio T, Sasaki Y (2014) Improvement of growth rate of plants by bubble discharge in water. Jpn J Appl Phys 54(1S):1AG07

    Article  Google Scholar 

  • Takaki K, Takahata J, Watanabe S, Satta N, Yamada O, Fujio T, Sasaki Y (2013) Improvements in plant growth rate using underwater discharge. J Phys 418(1):012140

    CAS  Google Scholar 

  • Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, Valdramidis VP (2018) Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol 77:21–31

    Article  CAS  Google Scholar 

  • Uchida R (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant Nutr Manage Hawaii’s Soils 2000:31–55

    Google Scholar 

  • Van Gaens W, Bogaerts A (2013) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D 46(27):275201

    Article  Google Scholar 

  • Verlackt CCW, Van Boxem W, Bogaerts A (2018) Transport and accumulation of plasma generated species in aqueous solution. Phys Chem Chem Phys 20(10):6845–6859

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y (2010) Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. J Hazard Mater 180(1):436–441

    Article  CAS  PubMed  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62(10):3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Wolf R, Sparavigna AC (2010) Role of plasma surface treatments on wetting and adhesion. Engineering 2(06):397

    Article  CAS  Google Scholar 

  • Yong Y, Yong IC, Alexander F (2012) Plasma discharge in liquid. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

This research project is supported by TSRI (Thailand Science Research and Innovation) and IRN project (2021), National Research Council of Thailand through Chiang Mai University. The Department of Physics and Materials Science, Biology Faculty of Science, Chiang Mai University, provided the examination equipment. We would like to express our sincere thanks for their help and support in this research.

Funding

This research was supported by the Thailand Science Research and Innovation (TSRI) and International Research Network (IRN) project (2021), National Research Council of Thailand through Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

NV, KC, MS and KL are principal investigators and prepared the main manuscript. PC approved the final manuscript draft. DB is the system and analysis advisor.

Corresponding author

Correspondence to Komgrit Leksakul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

All authors acknowledge their contribution towards this research.

Consent for Publication

All authors agree to the submission of this manuscript for publication in the Journal of Plant Growth Regulation.

Additional information

Handling Editor: Pramod kumar nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Practical Applications

Our proposed plasma system is applicable to post-harvest agricultural products, especially tomato seeds. However, the technology must be demonstrated on an industrial scale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vichiansan, N., Chatmaniwat, K., Sungkorn, M. et al. Effect of Plasma-Activated Water Generated Using Plasma Jet on Tomato (Solanum lycopersicum L. var. cerasiforme) Seedling Growth. J Plant Growth Regul 42, 935–945 (2023). https://doi.org/10.1007/s00344-022-10603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10603-7

Keywords

Navigation