Skip to main content
Log in

Molecular Identification and Antifungal Activity of a Defensin (PaDef) from Spruce

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Defensins, as part of the PR protein family, not only have antimicrobial activity in vitro, but also play an important role in plant disease resistance. To explore the molecular function of defensin in spruce, a defensin gene PaDef was isolated and characterized from Picea asperata. The full-length cDNA sequence of the PaDef was 264 bp and contained an ORF of 252 bp, encoding a total of 83 amino acids. The deduced PaDef protein belongs to the gamma-thionin family and contains the Knot1 domain and eight conserved cysteine residues. Blast and phylogenetic analysis showed that the PaDef protein shared high homology with other plant defensin proteins. The tertiary structure of PaDef was obtained by homologous modelling using the structure of Pinus sylvestris defensin as a template and exhibited a βαββ structure. SDS-PAGE analysis showed that the molecular mass of recombinant PaDef expressed in Escherichia coli was 23.8 kDa. Plate assay showed that purified PaDef exhibited strong antifungal activity inhibiting the growth of Pestalotiopsis neolitseae, but not Colletotrichum gloeosporioides and Botrytis cinerea. Microscopic observation revealed that purified PaDef had a negative effect on the hyphal morphology of all three phytopathogens. qRT-PCR analysis indicated that the PaDef gene had the highest expression level in needles of P. asperata compared with roots, phloem, twigs, and could be significantly upregulated by the pathogenic fungus Lophodermium piceae, which causes needle cast disease. These results provide a molecular basis for determining the molecular function of defensin PaDef in P. asperata and its potential as an antifungal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida MS, Cabral KM, Kurtenbach E, Almeida FC, Valente AP (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 315:749–757

    Article  CAS  PubMed  Google Scholar 

  • Bloch C, Richardson M (1991) A new family of small (5 kDa) protein inhibitors of insect α-amylases from seeds or sorghum (Sorghum bicolor (L) Munch) have sequence homologies with wheat γ-purothionins. Febs Lett 279:101–104

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruix M, Jiménez MA, Santoro J, González C, Colilla FJ, Méndez E, Rico M (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochem-Us 32:715–724

    Article  CAS  Google Scholar 

  • Carvalho AO, Gomes VM (2009) Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  Google Scholar 

  • Carvalho AO, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    Article  CAS  Google Scholar 

  • Chen GH, Hsu MP, Tan CH, Sung HY, Kuo C, Fan MJ, Chen HM, Chen S, Chen CS (2005) Cloning and characterization of a plant defensin VaD1 from Azuki Bean. J Agr Food Chem 53:982–988

    Article  CAS  Google Scholar 

  • Chen XF, Hou XL, Zhang JY, Zheng JQ (2008) Molecular characterization of two important antifungal proteins isolated by downy mildew infection in non-heading Chinese cabbage. Mol Biol Rep 35:621–629

    Article  CAS  PubMed  Google Scholar 

  • de Beer A, Vivier MA (2011) Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Res Notes 4:459

    Article  PubMed  PubMed Central  Google Scholar 

  • De Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120

    Article  Google Scholar 

  • De Coninck BMA, Sels J, Venmans E, Thys W, Goderis IJWM, Carrón D, Delauré SL, Cammue BPA, De Bolle MFC, Mathys J (2010) Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytol 187:1075–1088

    Article  PubMed  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Dracatos P, van der Weerden N, Carroll K, Johnson E, Plummer K, Anderson M (2014) Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol Plant Pathol 15:67–79

    Article  CAS  PubMed  Google Scholar 

  • Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech 17:353–358

    Article  CAS  PubMed  Google Scholar 

  • Fossdal CG, Nagy NE, Sharma P, Lönneborg A (2003) The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum -infected spruce roots. Plant Mol Biol 52:291–302

    Article  CAS  PubMed  Google Scholar 

  • Hanks J, Snyder A, Graham M, Shah R, Blaylock L, Harrison M, Shah D (2005) Defensin gene family in Medicago truncatula: Structure, expression and induction by signal molecules. Plant Mol Biol 58:385–399

    Article  CAS  PubMed  Google Scholar 

  • Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343:175–188

    Article  CAS  PubMed  Google Scholar 

  • Iseppon A, Galdino S, Calsa Junior T, Kido E, Tossi A, Belarmino L, Crovella S (2010) Overview on plant antimicrobial peptides. Curr Protein Pept Sc 11:181–188

    Article  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Fellers J, Adholeya A, Velivelli SLS, El-Mounadi K, Nersesian N, Clemente T, Shah D (2017) Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Res 26:37–49

    Article  CAS  PubMed  Google Scholar 

  • Khairutdinov BI, Ermakova EA, Yusypovych YM, Bessolicina EK, Tarasova NB, Toporkova YY, Kovaleva V, Zuev YF, Nesmelova IV (2017) NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochim Biophys Acta (BBA) Proteins Proteom 1865:1085–1094

    Article  CAS  Google Scholar 

  • Kovaleva V, Krynytskyy H, Gout I, Gout R (2011) Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl Microbiol Biot 89:1093–1101

    Article  CAS  Google Scholar 

  • Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expres Purif 63:12–17

    Article  CAS  Google Scholar 

  • Kragh KM, Nielsen JE, Nielsen KK, Dreboldt S, Mikkelsen JD (1995) Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol Plant Microbe in 8:424–434

    Article  CAS  Google Scholar 

  • Kraszewska J, Beckett MC, James TC, Bond U (2016) Comparative analysis of the antimicrobial activities of plant defensin-like and ultrashort peptides against food-spoiling bacteria. Appl Environ Microbiol 82:4288–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda AF, Vasconcelos ÃRAR, Pelegrini PCB, Grossi De Sa MF (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol 325:175–188

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Jian GL, Zhang YT, Ai TM (2007) Bacterial expression of a Trichosanthes kirilowii defensin (TDEF1) and its antifungal activity on Fusarium oxysporum. Appl Microbiol Biot 74:146–151

    Article  CAS  Google Scholar 

  • Li Z, Zhou MP, Zhang ZY, Ren LJ, Du LP, Zhang BQ, Xu HJ, Xin ZY (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomic 11:63–70

    Article  CAS  Google Scholar 

  • Liu YF, Liu LJ, Yang S, Zeng Q, He ZR, Liu YG (2019) Cloning, characterization and expression of the phenylalanine ammonia-lyase gene (PaPAL) from spruce Picea asperata. Forests 10:613

    Article  CAS  Google Scholar 

  • Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins: structure. Funct Bioinform 63:777–786

    Article  CAS  Google Scholar 

  • Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum Defensin 1 Interacts with Neurospora crassa Cyclin F related to the cell cycle. Biochemistry-Us 46:987–996

    Article  CAS  Google Scholar 

  • Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9:645

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, de Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem 194:533–539

    Article  CAS  PubMed  Google Scholar 

  • Mujacic M, Winston K, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: Application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238:325–332

    Article  CAS  PubMed  Google Scholar 

  • Padovan L, Segat L, Tossi A, Calsa T, Ederson AK, Brandao L, Guimarães RL, Pandolfi V, Pestana-Calsa MC, Belarmino LC, Benko-Iseppon AM, Crovella S (2010) Characterization of a new defensin from cowpea (Vigna unguiculata (L.) Walp.). Protein Peptide Lett 17:297–304

    Article  CAS  Google Scholar 

  • Parisi K, Shafee TM, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA (2018) The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 88:107–118

    Article  PubMed  Google Scholar 

  • Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of α-amylase inhibitors from the plant defensin family. Proteins: structure. Funct Bioinform 73:719–729

    Article  CAS  Google Scholar 

  • Pervieux I, Bourassa M, Laurans F, Hamelin R, Séguin A (2004) A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiol Mol Plant P 64:331–341

    Article  CAS  Google Scholar 

  • Picart P, Pirttilä AM, Raventos D, Kristensen H, Sahl H (2012) Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity. Bmc Plant Biol 12:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portieles R, Ayra-Pardo C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez GA, Borroto C, Trujillo Toledo L, Thomma B, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Ali S, Nayankantha NNC, Chandrashekar N, Mittra B, Grover A (2017) Isolation and expression analysis of defensin gene and its promoter from Brassica juncea. J Plant Dis Protect 124:591–600

    Article  Google Scholar 

  • Sagaram U, Pandurangi R, Kaur J, Smith T, Shah D (2011) Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Kuwabara C, Umeki N, Fujioka M, Saburi W, Matsui H, Abe F, Imai R (2016) The cold-induced defensin TAD1 confers resistance against snow mold and fusarium head blight in transgenic wheat. J Biotechnol 228:3–7

    Article  CAS  PubMed  Google Scholar 

  • Shafee T, Lay F, Phan TK, Anderson M, Hulett M (2017) Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 74:663–682

    Article  CAS  PubMed  Google Scholar 

  • Shahzad Z, Ranwez V, Fizames C, Marquès L, Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F (2013) Plant defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. N Phytol 200:820–833

    Article  CAS  Google Scholar 

  • Shen GA, Pang YZ, Wu WS, Miao ZQ, Qian HM, Zhao LX, Sun XF, Tang KX (2005) Molecular cloning, characterization and expression of a novel jasmonate-dependent defensin gene from Ginkgo biloba. J Plant Physiol 162:1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Song XM, Wang J, Wu F, Li X, Teng MK, Gong WM (2005) cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Mol Biol 57:13–20

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant-Microbe Interact 13:54–61

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  CAS  PubMed  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26:121–131

    Article  Google Scholar 

  • Velivelli SLS, Islam KT, Hobson E, Shah DM (2018) Modes of action of a Bi-domain plant defensin MtDef5 against a bacterial pathogen Xanthomonas campestris. Front Microbiol 9:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Villaverde A, Carrió MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Vriens K, Cammue B, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Nowak G, Culley D, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe in 12:410–418

    Article  CAS  Google Scholar 

  • Weerawanich K, Webster G, Ma JK, Phoolcharoen W, Sirikantaramas S (2018) Gene expression analysis, subcellular localization, and in planta antimicrobial activity of rice (Oryza sativa L.) defensin 7 and 8. Plant Physiol Bioch 124:160–166

    Article  CAS  Google Scholar 

  • Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q (2020) Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. Plant Sci 292:110379

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Ng TB (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Yuan SS, Jiang LL, Ye XJ, Ng T, Wu ZJ (2015) Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biot 99:4961–4981

    Article  CAS  Google Scholar 

  • Zarinpanjeh N, Motallebi M, Zamani MR, Ziaei M (2016) Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. J Appl Genet 57:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author Contributions

YL and YL conceived and designed the experiments; YL, LL, SY and GL performed the experiments; YL, LL, SY and QZ analyzed the data; YL contributed materials and reagents; CY and SH provided technical guidance; YL wrote the paper; All authors have read and approved the final manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, L., Yang, C. et al. Molecular Identification and Antifungal Activity of a Defensin (PaDef) from Spruce. J Plant Growth Regul 41, 494–506 (2022). https://doi.org/10.1007/s00344-021-10316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10316-3

Keywords

Navigation