Skip to main content
Log in

Three Paralogous R2R3-MYB Genes Contribute to Delphinidin-Related Anthocyanins Synthesis in Petunia hybrida

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Three ANTHOCYANIN SYNTHESIS REGULATOR genes (ASR1–3) that encode R2R3-MYB transcription factors were identified recently from Petunia hybrida. In this study, we conducted additional experiments to characterize their specific function in the regulation of anthocyanin synthesis. The ASR1–3 proteins were localized in the nucleus. Analysis of their regulatory function by transient expression in the petunia corolla and yeast two-hybrid assays showed that the residues Arg at position 51 and Ala at position 102 in the N-terminal domain were essential for the regulatory function of the proteins, and the conserved domain at the C-terminal end was important for activation of the protein. RNA sequencing of overexpression (OE) and RNA-interference transgenic lines confirmed that the ASR proteins specifically induce structural genes of anthocyanin synthesis, including the early biosynthesis genes CHSj, F3H, and F3′5′H-1, the late biosynthesis genes DFR, ANS, RT, MT, AT, and GT, and the anthocyanin-related glutathione S-transferase gene AN9. In addition, a member of the detoxifying efflux carrier family, a DTX35-like gene, was upregulated by ASRs. Determination of anthocyanin/anthocyanidin contents in ASR1-OE petunia lines revealed that ASR1 especially induced the flavonoid 3′,5′-hydroxylase, which was consistent with the abundance of dihydromyricetins and delphinidins, but not cyanidins. The ASR genes were induced under high-intensity light and upregulated the expression of MYBx and MYB27, thereby providing feedback repression of anthocyanin synthesis. An updated model is presented outlining the mechanisms underlying anthocyanin synthesis in petunia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AN:

Anthocyanin

ANS:

Anthocyanidin synthase

AT:

Acylation

bHLH:

Basic helix-loop-helix

4CL:

4-Coumaroyl-CoA ligase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

DHK:

Dihydrokaempferol

DHM:

Dihydromyricetin

DHQ:

Dihydroquercetin

DPL:

DEEP PURPLE

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

FLS:

Flavonol synthase

GT:

Glucosylation

MT:

Methylation

PAC:

Pale Aleurone Color

PAL:

Phenylalanine ammonia lyase

PAP:

PRODUCTION OF ANTHOCYANIN PIGMENT

PHZ:

PURPLE HAZE

R2R3-MYB:

R2R3 repeat myeloblastosis protein

RT:

Rhamnosylation

SD:

Synthetic dropout medium

TT:

Transparent testa

TTG:

Transparent testa glabra

WDR:

Beta-transducin repeat protein

References

  • Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014a) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26(3):962–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert NW, Davies KM, Schwinn KE (2014b) Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signaling and Behavior 9(9):e29526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription factor family in petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65(5):771–784

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13(3):99–102

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol. 11:106–106

    Article  CAS  Google Scholar 

  • Bliek M, Spelt K, Passeri V, Urbanus SL, Koes R, Quattrocchio FM. (2016) The genes behind the different colors of P. axillaris and P. inflata flowers. Nature Plants (Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrid, Supplemental Note 7)

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1):98–111

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Moser M, Amrad A, Bao M, Bapaume L et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants 2(6):16074

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Matsubara K, Omori T, Kokubun H, Kodama H, Watanabe H, Hashimoto G, Marchesi E, Bullrich L, Ando T (2007) Phylogenetic analysis of the genus Petunia (Solanaceae) based on the sequence of the Hf1gene. J Plant Res 120(3):385–397

    Article  CAS  PubMed  Google Scholar 

  • Consonni G, Geuna F, Gavazzi G, Tonelli C (1993) Molecular homology among members of the R gene family in maize. Plant J 3(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Conner AJ, Albert NW, Deroles SC (2009) Transformation and regeneration of petunia. In: Gerats T, Strommer J (eds) Petunia: Evolutionary, developmental and physiological genetics. Springer, New York, pp 395–409

    Chapter  Google Scholar 

  • de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 1(11):1422–1434

    Article  Google Scholar 

  • Fu Z, Wang L, Shang H, Dong X, Jiang H, Zhang J, Wang H, Li Y, Yuan X, Meng S, Gao J, Feng N, Zhang H (2019) An R3-MYB gene of Phalaenopsis, MYBx1, represses anthocyanin accumulation. Plant Growth Regul 88(2):129–138

    Article  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechenol 5:314–320

    Article  Google Scholar 

  • Hoballah ME, Gubitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell'Olivo A, Arnold M, Kuhlemeier C (2007) Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JG, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366(6452):276–279

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Chen YY, Tsai WC, Chen WH, Chen HH (2015) Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiol 168(1):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Kroon AR (2004) Transcription regulation of the anthocyanin pathway in Petunia hybrida. Vrije Universiteit, Amsterdam

    Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker U (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  CAS  PubMed  Google Scholar 

  • Martins TR, Berg JJ, Blinka S, Rausher MD, Baum DA (2013) Precise spatiotemporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in Clarkia gracilis (Onagraceae). New Phytol 197:958–969

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Kodama H, Kokubun H, Watanabe H, Ando T (2005) Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358:121–126

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Bioch 72:21–34

    Article  CAS  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18(4):831–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structuralanthocyanin genes. Plant Cell 12(9):1619–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Physiologist 155:349–361

    Article  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4(5):447–456

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc Lond B Biol Sci 368(1612):2012043

    Article  CAS  Google Scholar 

  • Tanaka T, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornielli G, Koes R, Quattrocchio F (2008) The genetics of flower color. In: Strommer J (ed) Petunia: Evolutionary, Developmental and Physiological Genetics (Gerats, T. Springer, New York, NY, pp 269–299

    Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10(12):1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f niedzwetzkyana). Plant J 90(2):276–292

    Article  CAS  PubMed  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49(5):772–785

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton, New Jersey

    Book  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20(3):176–185

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010) Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51:463–474

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Koes R, Shang H, Fu Z, Wang L, Dong X, Zhang J, Passeri V, Li Y, Jiang H, Gao J, Li Y, Wang H, Quattrocchio FM (2019) Identification and functional analysis of three new anthocyanin R2R3-MYB genes in Petunia. Plant Direct 3(1):e00114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG (2009) CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant 2:790–802

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ronald Koes and Francesca M. Quattrocchio for the petunia cultivars and Gateway vectors. We thank Robert McKenzie, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (U1504320) and Financial Project of Henan Province (20188105 and 2019XKYH03).

Author information

Authors and Affiliations

Authors

Contributions

HZ designed the experiments and wrote the manuscript; ZF, HJ, and LW performed the gene searches and RNA-Seq data analysis; XD, and HW cared for the plants; JZ and JG performed DNA and RNA extraction; YC, YL, and MX performed qRT-PCR analysis and generated transgenic petunia plants.

Corresponding author

Correspondence to Hechen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Jiang, H., Chao, Y. et al. Three Paralogous R2R3-MYB Genes Contribute to Delphinidin-Related Anthocyanins Synthesis in Petunia hybrida. J Plant Growth Regul 40, 1687–1700 (2021). https://doi.org/10.1007/s00344-020-10224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10224-y

Keyword

Navigation