Skip to main content

Transformation and Regeneration of Petunia

  • Chapter
Petunia

Abstract

Petunia has played a central role in transformation research since the earliest reports of plant transformation. It was a key model system when the first definitive accounts of Agrobacterium-mediated transformation and direct DNA transfer unequivocally established the transfer and expression of foreign genes in plants. Petunia subsequently played an important role in elucidating many of the characteristics of plant transformation, including unique sites of insertion, variable expression levels, and modified T-DNA structures among independently derived transformants. It was central in the demonstration of transient expression immediately following co-cultivation and transgene-induced silencing of gene expression, two phenomena currently of great importance in studies of gene function. One of the key reasons for the importance of Petunia in plant transformation research has been the selection for and/or identification of genotypes well suited to growth and regeneration in culture, for example, Petunia Mitchell, for which a simple transformation protocol is described. Agro-infiltration for transient gene expression and the development of intragenic vectors to effect gene transfer without the integration of “foreign” DNA represent recent advancements in Petunia transformation. Ease of transformation, coupled with other favorable biological characteristics, ensure that Petunia will remain a valuable model system for studies of gene function in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, N.W. (2006) Light-induced Anthocyanin Pigmentation in Transgenic Lc Petunia. M.Sc. thesis, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Ausubel, F.M., Bahnsen, K., Hanson, M., Mitchell, A. and Smith, H.J. (1980) Cell and tissue culture of haploid and diploid petunia “Mitchell”. Plant Mol. Biol. Newsletter 1, 26–32.

    Google Scholar 

  • Ballas, N., Zakai, N., Sela, I. and Loyter, A. (1988) Liposomes bearing a quaternary ammonium detergent as an efficient vehicle for functional transfer of TMV-RNA into plant protoplasts. Biochim. Biophys. Acta 939, 8–18.

    Article  CAS  Google Scholar 

  • Bevan, M.W., Flavell, R.B. and Chilton, M.D. (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304, 184–187.

    Article  CAS  Google Scholar 

  • Bianchi, F. and Walet-Foederer, H.G. (1974) An investigation into the anatomy of the shoot apex of Petunia hybrida in connection with the results of transformation experiments. Acta Bot. Neerl. 23, 1–6.

    Google Scholar 

  • Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis, D.H. (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J. 13, 381–392.

    Article  CAS  Google Scholar 

  • Buising, C.M. and Benbow, R.M. (1994) Molecular analysis of transgenic plants generated by microprojectile bombardment: Effect of petunia transformation booster sequence. Mol. Gen. Genet. 243, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Clark, K.R. and Sims, T.L. (1994) The S-ribonuclease gene of Petunia hybrida is expressed in nonstylar tissue, including immature anthers. Plant Physiol. 106, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Conner, A.J., Glare, T.R. and Nap, J.P. (2003) The release of genetically modified crops into the environment: II. Overview of ecological risk assessment. Plant J. 33, 19–46.

    Article  PubMed  Google Scholar 

  • Conner, A.J., Barrell, P.J., Baldwin, S.J., Lokerse, A.S., Cooper, P.A., Erasmuson, A.K., Nap, J.P. and Jacobs, J.M.E. (2007) Intragenic vectors for gene transfer without foreign DNA. Euphyt. 154, 341–353.

    Article  CAS  Google Scholar 

  • Davey, M.R., Cocking, E.C., Freeman, J., Pearce, N. and Tudor, I. (1980) Transformation of Petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18, 307–313.

    Article  CAS  Google Scholar 

  • Deroles, S.C. and Gardner, R.C. (1988a) Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11, 355–364.

    Google Scholar 

  • Deroles, S.C. and Gardner, R.C. (1988b) Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol. 11, 365–377.

    Google Scholar 

  • Deroles, S.C., Bradley, J.M., Davies, K.M. and Schwinn, K.E. (1996) Genetic transformation in Petunia. In: Y.P.S. Bajaj (Ed.), Plant Protoplasts and Genetic Engineering VII. Springer-Verlag, Berlin, pp. 270–279.

    Google Scholar 

  • Deroles, S.C., Boase, M.R., Lee, C.E. and Peters, T.A. (2002) Gene transfer to plants. In: A. Vainstein (Ed.), Breeding for Ornamentals: Classical and Molecular Approaches. Kluwer Academic, Dordrecht, pp. 155–196.

    Google Scholar 

  • Dowd, P.E., McCubbin, A.G., Wang, X., Verica, J.A., Tsukamoto, T., Ando, T. and Kaof, T-H. (2000) Use of Petunia inflata as a model for the study of solanaceous type self-incompatibility. Ann. Bot. 85, 87–93.

    Article  CAS  Google Scholar 

  • Draper, J., Davey, M.R., Freeman, J.P., Cocking, E.C. and Cox, B.J. (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts. Plant Cell Physiol. 23, 451–458.

    CAS  Google Scholar 

  • Esposito, S., Vitale, S., Corazza, L., Galante, C., Lorito, M. and Filippone, E. (2002) Resistance against fungal diseases in Petunia x hybrida: Application of "gene therapy". Italus Hortus 9, 80–84.

    Google Scholar 

  • Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci., USA 80, 4803–4807.

    Google Scholar 

  • Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  • Gould, J.H., Ulian, E.C. and Smith, R.H. (1993) Transformation of petunia and corn plants (Petunia hybrida and Zea mays) using Agrobacterium tumefaciens and the shoot apex. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 23, Plant Protoplasts and Genetic Engineering IV. Springer, Berlin, pp. 302–314.

    Google Scholar 

  • Griesbach, R.J. (1987) Chromosome-mediated transformation via microinjection. Plant Sci. 50, 69–78.

    Article  CAS  Google Scholar 

  • Gubrium, E.K., Clevenger, D.J., Clark, D.G., Barrett, J.E. and Nell, T.A. (2000) Reproduction and horticultural performance of transgenic ethylene-insensitive petunias. J. Am. Soc. Hort. Sci. 125, 277–281.

    Google Scholar 

  • Herrera-Estrella, L., de Block, M., Messens, E., Hernalsteens, J.P., van Montagu, M. and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2, 987–95.

    CAS  PubMed  Google Scholar 

  • Hess, D. (1969a) Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bie Petunia hybrida. Z. Pflanzenphysiol. 60, 348–358.

    Google Scholar 

  • Hess, D. (1969b) Versuche zur transformation an höheren pflanzen: Wiederholung der anthocyan-induktion bei Petunia und erste charakterisierung des transformierenden Prinzips. Z. Pflanzenphysiol. 61, 286–298.

    Google Scholar 

  • Hess, D. (1970) Versuche zur Transformation an höheren pflanzen: Genetische charakterisierung einiger mutmässlich transformierter pflanzen. Z. Pflanzenphysiol. 63, 31–43.

    CAS  Google Scholar 

  • Hess, D. (1972) Versuche zur transformation an höheren pflanzen: Nachweis von heterozygoten in versuchen zur transplantation von genen für anthocyansynthese bei Petunia hybrida. Z. Pflanzenphysiol. 66, 155–166.

    Google Scholar 

  • Hess, D. (1973) Transformationsversuche an höheren pflanzen: Untersuchungen zur realisation des exosomen-modells der transformation bei Petunia hybrida. Z. Pflanzenphysiol. 68, 432–440.

    Google Scholar 

  • Hess, D., Lörz, H. and Weisert, E.M. (1974a) Die aufnahme bakterieller DNA in quellende und keimende pollen von Petunia hybrida und Nicotiana glauca. Z. Pflanzenphysiol. 74, 52–63.

    Google Scholar 

  • Hess, D., Gresshoff, P.M., Fielitz, U. and Gleiss, D. (1974b) Uptake of protein and bacteriophage into swelling and germinating pollen of Petunia hybrida. Z. Pflanzenphysiol. 74, 371–376.

    Google Scholar 

  • Hess, D. (1977) Cell modification by DNA uptake. In: J. Reinert and Y.S. Bajaj (Eds.), Applied and Fundamental Aspects of Plant Cell Tissue and Organ Culture. Springer-Verlag, Berlin, pp. 506–535.

    Google Scholar 

  • Hoekema, A., Hirsh, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303, 179–80.

    Article  CAS  Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes to plants. Science 227, 1229–1231.

    Article  CAS  Google Scholar 

  • Horsch, R.B. and Klee, H.J. (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci., USA 83, 4428–4432.

    Google Scholar 

  • Izhar, S. and Power, J.B. (1977) Genetical studies with petunia leaf protoplasts. I Genetic variation to specific growth hormones and possible genetic control on stages of protoplast development in culture. Plant Sci. Lett. 8, 375–383.

    Article  CAS  Google Scholar 

  • Janssen, B.J. and Gardner, R.C. (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14, 61–72.

    Article  Google Scholar 

  • Jones, J.D.G., Gilbert, D.E., Grady, K.L. and Jorgensen, R.A. (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207, 478–485.

    Article  CAS  Google Scholar 

  • Jorgenson, R.A., Snyder, C. and Jones, J.D.G. (1987) T-DNA is organised predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207, 471–477.

    Article  Google Scholar 

  • Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677–678.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenoff, I. and Saedler, H. (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, P., Heidmann, I. and Niedenhof, I. (1993) Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, P. and Heidmann, I. (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene-DNA: An indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243, 390–399.

    CAS  PubMed  Google Scholar 

  • Mitchell, A.Z., Hanson, M.R., Skvirsky, R.C. and Ausubel, F.M. (1980) Anther culture of Petunia: Genotypes with high frequency of callus, root, or plantlet formation. Z. Pflanzenphysiol. 100, 131–146.

    Google Scholar 

  • Mursashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  Google Scholar 

  • Nap, J.P., Metz, P.L.J., Escaler, M. and Conner, A.J. (2003) The release of genetically modified crops into the environment: I. Overview of current status and regulations. Plant J. 33, 1–18.

    Article  PubMed  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Oud, J.S.N., Schneiders, H., Kool, A.J. and Van Grinsven, M.Q.J.M. (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphyt. 85, 403–409.

    Article  Google Scholar 

  • Paszkowski, J., Shillito, R.D., Saul, M., Mandak, V., Hohn, T., Hohn, B. and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3, 2717–2722.

    CAS  PubMed  Google Scholar 

  • Petolino, J. (2002) Direct DNA delivery into intact cells and tissues. In: G.G. Khachatourians, A. McHughen, R. Scorza, W.K. Nip and Y.H. Hui (Eds.), Transgenic Plants and Crops. Marcel Dekker Inc., NY, pp. 137–143.

    Google Scholar 

  • Potrykus, I., Shillito, R.D., Saul, M. and Paszkowski, J. (1985) Direct gene transfer: State of the art and future potential. Plant Mol. Biol. Rep. 3, 117–128.

    Article  CAS  Google Scholar 

  • Raquin, C. (1982) Genetic control of embryo production and embryo quality in anther culture of Petunia. Theor. Appl. Genet. 63, 151–154.

    Article  Google Scholar 

  • Shang, Y.J., Schwinn, K.E., Bennett, M.J., Hunter, D.A., Waugh, T.L., Pathirana, N.N., Brummell, D.A., Jameson, P.E. and Davies, K.M. (2007) Methods for transient assay of gene function in floral tissues. Plant Methods 3:1 doi:10.1186/1746-4811/3/1.

    Google Scholar 

  • Skvirsky, R.C., Hanson, M.R. and Ausubel, F.M. (1984) Intraspecific genetic variation in cytokinin-controlled shoot morphogenesis from explants of Petunia hybrida. Plant Sci. Lett. 35, 237–246.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower color. Plant and Cell Phys. 39, 1119–1126.

    CAS  Google Scholar 

  • Thomas, J.C., Akroush, A.M. and Adamus, G. (1999) The indole alkaloid tryptamine produced in transgenic Petunia hybrida. Plant Phys. Biochem. 37, 665–670.

    Article  CAS  Google Scholar 

  • Tjokrokusumo, D., Heinrich, T., Wylie, S., Potter, R. and McComb, J. (2000) Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep. 19, 792–797.

    Article  CAS  Google Scholar 

  • Ulian, E.C., Magill, J.M. and Smith, R.H. (1994) Expression and inheritance pattern of two foreign genes in Petunia. Theor. Appl. Genet. 88, 433–440.

    Article  CAS  Google Scholar 

  • van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower colour pigmentation. Nature 333, 866–869.

    Article  Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuitje, A.R. (1990) Flavonoid genes in Petunia: Addition of a limited number of gene copies may lead to a supression of gene expression. Plant Cell 2, 291–299.

    Article  PubMed  Google Scholar 

  • Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. (1998) Transgene-induced gene silencing in plants. Plant J. 16, 651–659.

    Article  CAS  PubMed  Google Scholar 

  • Wallroth, M., Gerats, A.G.M., Rogers, S.G., Fraley, R.T. and Horsch, R.B. (1986) Chromosomal location of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202, 6–15.

    Article  CAS  Google Scholar 

  • Winefield, C., Lewis, D., Arathoon, S. and Deroles, S. (1999) Alteration of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5, 543–551.

    Article  CAS  Google Scholar 

  • Ylstra, B., Busscher, J., Franken, J., Hollman P.C.H., Mol, J.N.M. and van Tunen, A.J. (1994) Flavonols and fertilization in Petunia hybrida: Localization and mode of action during pollen-tube growth. Plant J. 6, 201–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Conner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Conner, A.J., Albert, N.W., Deroles, S.C. (2009). Transformation and Regeneration of Petunia. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_19

Download citation

Publish with us

Policies and ethics