Skip to main content
Log in

Effect of Partial Shading Treatments on Anthocyanin Synthesis in the Hypocotyls of Soybean Sprouts Under UV-A irradiation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To evaluate the effects of different partial shading treatments on the synthesis of anthocyanins under UV-A irradiation in soybean sprouts, we examined the anthocyanin content, transcript levels of key genes related to anthocyanin biosynthesis (CRY1, CRY2, PAL, CHS, CHI, DFR, ANS and UFGT), and the activity of phenylalanine ammonia-lyase (PAL). The results showed that UV-A radiation could significantly increase the content of anthocyanins in the epidermal layer of hypocotyls in soybean sprouts. This trend was consistent with the pattern of anthocyanin biosynthesis-related gene expressions, which were significantly up-regulated by UV-A. Different partial shading treatments significantly reduced the content of anthocyanins and the expression of DFR, ANS, and UFGT in response to the UV-A irradiation. Cotyledon-shading treatment lowered the content of anthocyanin due to the down-regulation of the expression of anthocyanin biosynthesis-related genes, but this effect is limited. Compared with the cotyledon and the upper part of hypocotyls, the lower part of hypocotyls was the predominant site of anthocyanin synthesis in soybean sprouts. These findings imply that anthocyanins in hypocotyls are biosynthesised locally, and there is no systemic biosynthesis, which was further supported by the PAL activity and the transcripts of the genes responsible for anthocyanin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert N, Davies K, Lewis D, Zhang H, Montefiori M, Brendolise C, Boase M, Ngo H, Jameson P, Schwinn K (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer B, Gardestrom P, Keech O (2014) In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. J Exp Bot 14:4037–4049

    Article  Google Scholar 

  • Buer SC, Muday KG, Diordjevic AM (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cominelli E, Gusmaroli G, Allegra Galbiatia M, Wade HK, Jenkins G, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894

    Article  CAS  PubMed  Google Scholar 

  • Das P, Shin D, Choi SB, Park YL (2012) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells 34:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638

    Article  CAS  Google Scholar 

  • Dubos C (2012) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  Google Scholar 

  • Feng FJ, Li MJ, Ma FW, Cheng LL (2014) The effects of bagging and debagging on external fruit quality, metabolites, and the expression of anthocyanin biosynthetic genes in ‘Jonagold’ apple (Malus domestica Borkh.). Sci Hortic 165:123–131

    Article  CAS  Google Scholar 

  • Gonzalez OD, Vondkin OL (2007) Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. BMC Genom 8:468

    Article  Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo J, Wang MH (2010) Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regul 62:1–8

    Article  CAS  Google Scholar 

  • He J, Giusti M (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Il Park Y, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao YL, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 3(8):217–230

    Article  Google Scholar 

  • Jiao J, Gai QY, Wang W, Luo M, Gu CB, Fu YJ, Ma W (2015) Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus hairy root cultures. J Agric Food Chem 63:8216–8224

    Article  CAS  PubMed  Google Scholar 

  • Kakuszi A, Boddi B (2014) Light piping activates chlorophyll biosynthesis in the under-soil hypocotyl section of bean seedlings. J Photochem Photobiol B 140:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Chen F, Wang X, Choi JH (2006) Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J Agric Food Chem 54:7263–7269

    Article  CAS  PubMed  Google Scholar 

  • Kim SL, Lee JE, Kwon YU, Kim WH, Jung GH, Kim DW, Lee CK, Lee YY, Kim MJ, Kim YH, Hwang TY, Chung IM (2013) Introduction and nutritional evaluation of germinated soy germ. Food Chem 136:491–500

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical path ways. Trends Plant Sci 10(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Koide T, Kamei H, Hashimoto Y (1996) Antitumor effect of hydrolyzed anthocyanin from grape rinds and red rice. Cancer Biother Radiopharm 11(4):273–277

    Article  CAS  PubMed  Google Scholar 

  • Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M (1999) ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 7(11):1217–1226

    Article  Google Scholar 

  • Lee MJ, Son J, Oh MM (2014) Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J Sci Food Agric 94:197–204

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Mao K, Zhao C, Zhao XY, Zhang RF, Zhang HL, Shu HR, Hao YJ (2013) Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica). Plant Cell Rep 4(32):555–566

    Article  Google Scholar 

  • Liu X, Cohen J, Gardner G (2011) Low-fluence red light increases the transport and biosynthesis of auxin. Plant Physiol 157:891–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Sato T, Kumagai T, Noda K (2001) Differential responses to UV-B irradiation of three near isogenic lines carrying different purple leaf genes for anthocyanin accumulation in rice (Oryza sativa L.). Breed Sci 51(1):27–32

    Article  CAS  Google Scholar 

  • Mendez M, Jones DG, Manetas Y (1999) Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytol 144(2):275–282

    Article  CAS  Google Scholar 

  • Moglich A, Yang XJ, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47

    Article  CAS  PubMed  Google Scholar 

  • Mostafa MM, Rahma EH (1987) Chemical and nutritional changes in soybean during germination. Food Chem 23(4):257–275

    Article  CAS  Google Scholar 

  • Preuten T, Hohm T, Bergmann S, Fankhauser C (2013) Defining the site of light perception and initiation of phototropism in Arabidopsis. Curr Biol 19(23):1934–1938

    Article  Google Scholar 

  • Shabala S, White GR, Djordjevic AM, Ruan YL, Mathesius U (2016) Root-to-shoot signaling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104

    Article  CAS  Google Scholar 

  • Su NN, Wu Q, Liu YY, Cai JT, Shen WB, Xia K, Cui J (2014) Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish sprouts under UV-A irradiation. J Agric Food Chem 62(27):6454–6462

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Tossi V, Lombardo C, Cassia R, Lamattina L (2012) Nitric oxide and flavonoids are systemically induced by UV-B in maize leaves. Plant Sci 193–194:103–109

    Article  PubMed  Google Scholar 

  • Tsurunaga Y, Takahashi T, Katsube T, Kudo A, Kuramitsu O, Ishiwata M, Matsumoto S (2013) Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem 141(1):552–556

    Article  CAS  PubMed  Google Scholar 

  • Tumova L, Tuma J (2011) The effect of UV light on isoflavonoid production in Genista tinctoria culture in vitro. Acta Physiol Plant 33:635–640

    Article  CAS  Google Scholar 

  • Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, DeWitt DL (1999) Antioxidant and anti-inflammatory activities of anthocyanins and their ahlycon, cyaniding, from tart cherries. J Nat Prod 62(2):294–296

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou B, Sun M, Li Y, Kawabata S (2012) UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings. Plant Cell Physiol 53(8):1470–1480

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Albert NW, Zhang HB, Arathoon S, Boase MR, Ngo H, Schwinn KE, Davies KM, Lewis DH (2014) Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid. Planta 5(240):983–1002

    Article  Google Scholar 

  • Yuan YX, Chiu LW, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 6:1141–1153

    Article  Google Scholar 

  • Zhang ZZ, Li XX, Chu YN, Zhang MX, Wen YQ, Duan CQ, Pan QH (2012) Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries. Plant Physiol Bioch 57:74–83

    Article  CAS  Google Scholar 

  • Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58:1771–1781

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Wang Y, Zhan Y, Li Y, Kawabata S (2013) Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and response to blue/UV-A light in turnip. Am J Bot 100(12):2458–2467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31572169) and Jiangsu Agriculture Science Technology Innovation Fund (CX(15)1040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2016_9617_MOESM1_ESM.tif

Supplementary material 1 (TIFF 7920 kb) The concentration of soluble sugar in the hypocotyls of soybean sprouts under UV-A irradiation at 12, 24 and 36 h. Con, untreated under UV-A; RC, remove the cotyledons under UV-A; CC, cover the cotyledons under UV-A. Plants were grown in the dark for 60 h and then were removed or covered the cotyledons and transferred to 5 W m−2 UV-A light for another 12, 24 or 36 h to harvest. The concentration of soluble sugar was measured by spectrophotometric method. Dates are the mean ± standard error (n = 3); Different letters are significantly different at level P < 0.05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, N., Wu, Q., Qi, N. et al. Effect of Partial Shading Treatments on Anthocyanin Synthesis in the Hypocotyls of Soybean Sprouts Under UV-A irradiation. J Plant Growth Regul 36, 50–59 (2017). https://doi.org/10.1007/s00344-016-9617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9617-y

Keywords

Navigation