Skip to main content

Advertisement

Log in

Differential Effects of Plant Growth-Promoting Rhizobacteria on Maize Growth and Cadmium Uptake

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Maize is a plant known for food, feed, and energy value, but being a greater biomass, it may also be utilized to extract pollutants from soil. Plant growth-promoting rhizobacteria (PGPR) may act as biofertilizer to improve plant health and indirectly may enhance metal extraction. This study focuses on five bacterial strains isolated from the vegetable (Bitter gourd) rhizosphere irrigated with industrial effluent and characterized for various plant growth-promoting activities. Based on 16S rRNA gene sequencing, bacterial strains belonging to the genera, Bacillus (CIK-517, CIK-519), Klebsiella (CIK-518), Leifsonia (CIK-521), and Enterobacter (CIK-521R), were tested for their ability to promote maize growth in axenic conditions. Results showed negative and positive regulation of maize growth by the exogenous application of Cd and PGPR, respectively. Seed germination assays revealed significant reduction in relative seedling growth of maize cultivars upon Cd exposure (0–80 mg Cd L−1). The tested strains showed tolerance to Cd (1.78–4.45 mmol L−1) and were positive for catalase, oxidase, phosphate solubilization, exopolysaccharide (EPS), and auxin production, whereas CIK-518, CIK-519, and CIK-521R were negative for EPS, phosphate solubilization, and oxidase activities, respectively. Bacterial strains significantly increased shoot/root growth and their dry biomass in normal and Cd-contaminated soil as compared to their respective controls. None of the strains showed significant effects on relative water content or membrane permeability; however, Cd uptake significantly increased in plant tissues upon bacterial inoculation. Bacterial strains CIK-518 and CIK-521R are effective colonizers and thus can be potential inoculants to promote maize growth and Cd extraction/stabilization in Cd-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad I, Akhtar MJ, Zahir ZA, Jamil A (2012) Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot 44:1569–1574

    Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Zahir ZA (2013) Comparative efficacy of growth media in causing cadmium toxicity to wheat at seed germination stage. Int J Agric Biol 15:517–522

    CAS  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065

    Article  CAS  Google Scholar 

  • Alami Y, Achouk W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soil. Blackie Academic and Professional, London

    Book  Google Scholar 

  • An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2010) Will modifying plant ethylene status improve plant productivity in water limited environments? In: New directions for a diverse planet: Proc. Int. Crop Sci. Congr., 4th, Brisbane, Australia, 26 September–1 October 2004. www.cropscience.org.au/icsc2004/poster/1/3/4/510_doddicref.htm (verified 10 January 2010). Regional Inst., Gosford, NSW, Australia

  • Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507

    CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93:1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan L. Mill sp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16:3–13

    CAS  Google Scholar 

  • Iram S, Ahmad I, Akhtar S (2012) Distribution of heavy metals in peri-urban agricultural areas soils. J Chem Soc Pak 34:861–869

    CAS  Google Scholar 

  • Jeong S, Moon HS, Nam K, Kim JY, Kim TS (2012) Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere 88:204–210

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Malik RN, Jadoon WA, Husain SZ (2010) Metal contamination of surface soils of industrial city Sialkot, Pakistan: a multivariate and GIS approach. Environ Geochem Health 32:179–191

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato and pepper plants to salt stress. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331:5–16

    Article  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 409:167–178

    Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb, Cu and Cd binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace elements. Crit Rev Biotechnol 29:120–130

    Article  CAS  PubMed  Google Scholar 

  • Roane TM, Pepper IL (2000) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364

    Article  Google Scholar 

  • Sathyapriya H, Sariah M, Akmar ASN, Wong M (2012) Root colonisation of Pseudomonas aeruginosa strain UPMP3 and induction of defence-related genes in oil palm (Elaeis guineensis). Ann Appl Biol 160:137–144

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons M, van der Bij A, Brand I, de Weger LA, Wijffelman CA, Laugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonoization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O’Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692

    Article  CAS  PubMed  Google Scholar 

  • Talboys PJ, Owen DW, Healey JR, Withers PJA, Jones DL (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. BMC Plant Biol 14:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnelajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 43:1691–1705

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600

    Article  PubMed  Google Scholar 

  • Yang Y, Zhang F, Li H, Jiang R (2009) Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J Environ Manage 90:1117–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “Higher Education Commission” of Pakistan under the Indigenous 5000 Fellowship Scheme, Batch IV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Akhtar, M.J., Asghar, H.N. et al. Differential Effects of Plant Growth-Promoting Rhizobacteria on Maize Growth and Cadmium Uptake. J Plant Growth Regul 35, 303–315 (2016). https://doi.org/10.1007/s00344-015-9534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9534-5

Keywords

Navigation