Skip to main content
Log in

Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicas (Stichopodidae) and cross-species testing in other sea cucumbers

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Thirty-five new microsatellite loci from the sea cucumbers Holothurian scabra (Jaeger, 1833) and Apostichopus japonicas (Selenka, 1867) were screened and characterized using the method of magnetic bead enrichment. Of the twenty-four polymorphic loci tested, eighteen were consistent with Hardy-Weinberg equilibrium after a modified false discovery rate (B-Y FDR) correction, whereas six showed statistically significant deviations (CHS2 and CHS11: P<0.014 790; FCS1, FCS6, FCS8 and FCS14: P<0.015 377). Furthermore, four species of plesiomorphous and related sea cucumbers (Holothurian scabra, Holothuria leucospilota, Stichopus horrens and Apostichopus japonicas) were tested for mutual cross-amplification using a total of ninety microsatellite loci. Although transferability and universality of all loci were generally low, the results of the cross-species study showed that the markers can be applied to identify individuals to species according to the presence or absence of specific microsatellite alleles. The microsatellite markers reported here will contribute to the study of genetic diversity, assisted breeding, and population conservation in sea cucumbers, as well as allow for the identification of individuals to closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balloux F, Ecoffey E, Fumagalli L, Goudet J, Wyttenbach A, Hausser J. 1998. Microsatellite conservation, polymorphism, and GC content in shrews of the genus Sorex (Insectivora, Mammalia). Mol. Biol. Evol., 15 (4): 473–475.

    Article  Google Scholar 

  • Barbará T, Palma-Silva C, Paggi G M, Bered F, Fay M F, Lexer C. 2007. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol. Ecol., 16 (18): 3759–3767.

    Article  Google Scholar 

  • Battaglene S C, Seymour J E. 1998. Detachment and grading of the tropical sea cucumber sandfish, Holothuria scabra, juveniles from settlement substrates. Aquaculture, 159 (3-4): 263–274.

    Article  Google Scholar 

  • Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs, 9 (10): 1761–1805.

    Article  Google Scholar 

  • Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet, 32 (3): 314–331.

    Google Scholar 

  • Chan Y M, Twyford A D, Tnah L H, Lee C T. 2015. Characterisation of EST-SSR markers for Begonia maxwelliana (Begoniaceae) and cross-amplification in 23 species from 7 Asian sections. Sci. Hortic., 190: 70–74.

    Article  Google Scholar 

  • Chen M, Gao L L, Zhang W J, You H Z, Sun Q, Chang Y Q. 2013. Identification of forty-five gene-derived polymorphic microsatellite loci for the sea cucumber, Apostichopus japonicus. J. Genet. 92(2): e31–e35.

    Google Scholar 

  • Conand C, Bryne M. 1993. A review of recent developments in the world sea cucumber fisheries. Mar. Fish. Rev., 55 (4): 1–13.

    Google Scholar 

  • Conand C. 1990. The fishery Resources of Pacific Island Countries. Part 2: Holothurians. FAO Fisheries Technical Paper, No. 272.2. Food and Agriculture Organization of the United Nations, Rome, Italy. p.143.

    Google Scholar 

  • Conand C. 2006. Sea Cucumber Biology, Taxonomy, Distribution: Conversation Status. In: Proceedings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora Tech Workshop on the Conversation of Sea Cucumbers in the Families Holothuridae and Stichopodidae. Kuala Lumpur, Malaysia. p.1–3.

    Google Scholar 

  • Dai G, Li Z B, Shangguan J B, Ning Y F, Deng H W, Yuan Y, Huang Y S, Yang H, Lu J. 2015. Development and characterization of polymorphic microsatellite loci in the sea cucumber Holothuria leucospilota. Genet. Mol. Res., 14 (1): 538–541.

    Article  Google Scholar 

  • Fitch A J, Leeworthy G, Li X X, Bowman W, Turner L, Gardner M G. 2013. Isolation and characterisation of eighteen microsatellite markers from the sea cucumber Holothuria scabra (Echinodermata: Holothuriidae). Aust. J. Zool., 60 (6): 368–371.

    Article  Google Scholar 

  • Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16 (5): 1099–1106.

    Article  Google Scholar 

  • Kanno M, Li Q, Kijima A. 2005. Isolation and characterization of twenty microsatellite loci in Japanese sea cucumber (Stichopus japonicus). Mar. Biotechnol., 7 (3): 179–183.

    Article  Google Scholar 

  • Lalitha S. 2000. Primer Premier 5. Biotech Softw. Int. Rep., 1 (6): 270–272.

    Article  Google Scholar 

  • Lee G A, Kwon S J, Park Y J, Lee M C, Kim H H, Lee J S, Lee S Y, Gwag J G, Kim C K, Ma K H. 2011. Crossamplification of SSR markers developed from Allium sativum to other Allium species. Sci. Hortic., 128 (4): 401–407.

    Article  Google Scholar 

  • Li Q and Wan JM. 2005. SSRHunter: Development of a local searching software for SSR sites. Hereditas, 27: 808–810.

    Google Scholar 

  • Li Q, Chen L, Kong L. 2009. A genetic linkage map of the sea cucumber, Apostichopus japonicus (Selenka), based on AFLP and microsatellite markers. Anim. Genet., 40 (5): 678–685.

    Article  Google Scholar 

  • Li Z B, Dai G, Shangguan J B, Ning Y F, Li Y Y, Chen R B, Huang Y S, Yuan Y. 2015a. Isolation and characterization of polymorphic microsatellite loci in the sea cucumber Holothuria scabra. Genet. Mol. Res., 14 (2): 6529–6532.

    Article  Google Scholar 

  • Li Z B, Dai G, Shangguan J B, Ning Y F, Li Y Y, Chen R B, Yuan Y, Huang Y S. 2015b. Isolation and characterization of microsatellite markers of sea cucumber Stichopus horrens. Genet. Mol. Res., 14 (3): 8496–8499.

    Article  Google Scholar 

  • Liu Z J, Cordes J F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238: 1–37.

    Article  Google Scholar 

  • Luo W, Qu H Y, Li J Y, Wang X, Lin Q. 2015. A novel method for the identification of seahorses (genus Hippocampus) using cross-species amplifiable microsatellites. Fish. Res., 172: 318–324.

    Article  Google Scholar 

  • Nair A, Gopalan S V, George S, Kumar K S, Teacher A G F, Merilä J. 2012. High cryptic diversity of endemic Indirana frogs in the Western Ghats biodiversity hotspot. Anim. Conserv., 15 (5): 489–498.

    Article  Google Scholar 

  • Narum S R. 2006. Beyond bonferroni: less conservative analyses for conservation genetics. Conserv. Genet., 7 (5): 783–787.

    Article  Google Scholar 

  • Peng W, Bao Z M, Du H X, Yan J J, Zhang L L, Hu J J. 2012. Development and characterization of 70 novel microsatellite markers for the sea cucumber (Apostichopus japonicus). Genet. Mol. Res., 11 (1): 434–439.

    Article  Google Scholar 

  • Primmer C R, Painter J N, Koskinen M T, Palo J U, Merilä J. 2005. Factors affecting avian cross-species microsatellite amplification. J. Avian Biol., 36 (4): 348–360.

    Article  Google Scholar 

  • Serapion J, Kucuktas H, Feng J N, Liu Z J. 2004. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Mar. Biotechnol., 6 (4): 364–377.

    Article  Google Scholar 

  • Shangguan J B, Li Z B, Ning Y F, Huang Y S, Yuan Y, Lu J, Li B B, Mao X Q. 2014a. Screening and characterization of novel polymorphic microsatellite markers from sea cucumber Holothuria leucospilota. Genet. Mol. Res., 14 (2): 6555–6560.

    Article  Google Scholar 

  • Shangguan J B, Li Z B, Yuan Y, Huang Y S. 2014b. Identification and characterization of microsatellite markers from the tropical sea cucumber, Stichopus horrens (Selenka). Genet. Mol. Res., 14 (4): 13582–13587.

    Article  Google Scholar 

  • Shikano T, Ramadevi J, Shimada Y, Merilä J. 2010. Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics, 11 (1): 334.

    Article  Google Scholar 

  • Soldati M C, Inza M V, Fornes L, Zelener N. 2014. Cross transferability of SSR markers to endangered Cedrela species that grow in Argentinean subtropical forests, as a valuable tool for population genetic studies. Biochem. Syst. Ecol., 53 (8): 8–16.

    Article  Google Scholar 

  • Taiyeb-Ali T B, Zainuddin S L, Swaminathan D, Yaacob H. 2003. Efficacy of ‘Gamadent’ toothpaste on the healing of gingival tissues: a preliminary report. J. Oral Sci., 45 (3): 153–159.

    Article  Google Scholar 

  • Tautz D. 1989. Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 17 (16): 6463–6471.

    Article  Google Scholar 

  • Tian C Y, Li Q, Liang Y. 2008. Healthy Aquaculture Techniques of the Sea Cucumber Apostichopus japonicus. Ocean University of China Press, Qingdao, China. (in Chinese)

    Google Scholar 

  • van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4 (3): 535–538.

    Article  Google Scholar 

  • Varshney R K, Graner A, Sorrells M E. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol., 23 (1): 48–55.

    Article  Google Scholar 

  • Vogiatzi E, Hanel R, Dailianis T, Lagnel J, Hassan M, Magoulas A, Tsigenopoulos C S. 2012. Description of microsatellite markers in four mullids based on the development and cross-species amplification of 18 new markers in red mullet (Mullus barbatus). Biochem. Syst. Ecol., 44: 279–285.

    Article  Google Scholar 

  • Xia J J, Ren C H, Yu Z H, Wu X Y, Qian J, Hu C Q. 2016. Complete mitochondrial genome of the sandfish Holothuria scabra (Holothuroidea, Holothuriidae). Mitochondr. DNA Part A, 27 (6): 4174–4175.

    Article  Google Scholar 

  • Yeh F C, Yang R, Boyle T J, Ye Z, Xiyan J M. 2000. PopGene32, Microsoft Windows-Based freeware for Population. Genetic Analysis. Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.

    Google Scholar 

  • Zane L, Bargelloni L and Patarnello T. 2002. Strategies for microsatellite isolation: a review. Mol. Ecol., 11: 1–16.

    Article  Google Scholar 

  • Zhan A B, Bao Z M, Lu W, Hu X L, Peng W, Wang M L, Hu J J. 2007. Development and characterization of 45 novel microsatellite markers for sea cucumber (Apostichopus japonicus). Mol. Ecol. Notes, 7 (6): 1345–1348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbao Li  (黎中宝).

Additional information

Supported by the Natural Science Foundation of Fujian Province (Nos. 2014J01133, 2017J01638), the National Natural Science Foundation of China (No. 31272668), and the Program for New Century Excellent Talents in Fujian Province University and the Foundation for Innovative Research Team of Jimei University, China (No. 2010A004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, J., Li, Z. Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicas (Stichopodidae) and cross-species testing in other sea cucumbers. J. Ocean. Limnol. 36, 519–527 (2018). https://doi.org/10.1007/s00343-018-6315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6315-6

Keyword

Navigation