Skip to main content
Log in

A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit K, Sarina E, Yuan X, Ashish S, Zhang Q, Jo D, Xavier M F, Van Langenhove H. 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol., 28 (7): 371–380.

    Article  Google Scholar 

  • Azma M, Mohamad R, Rahim R A, Ariff A B. 2010. Improved protocol for the preparation of Tetraselmis suecica axenic culture and adaptation to heterotrophic cultivation. The Open Biotechnol. J., 4: 36–46.

    Article  Google Scholar 

  • Bolch C J S, Blackburn S I. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J. Appl. Phycol., 8 (1): 5–13.

    Article  Google Scholar 

  • Brennan L, Owende P. 2010. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev., 14: 557–577.

    Article  Google Scholar 

  • Bruckner C G, Kroth P G. 2009. Protocols for the removal of bacteria from freshwater benthic diatom cultures. J. Phycol., 45 (4): 981–986.

    Article  Google Scholar 

  • Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K. 2011. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl. Microbiol. Biot., 91 (1): 31–46.

    Article  Google Scholar 

  • Carvalho A P, Meireles L A, Malcata F X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Progr., 22 (6): 1 490–1 506.

    Article  Google Scholar 

  • Chen G Q, Chen F. 2006. Growing phototrophic cells without light. Biotechnolo. Lett., 28 (9): 607–616.

    Article  Google Scholar 

  • Chiovitti D T, Bacic P T, Burke J M, Wetherbee D R. 2003. Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostaur o s australis (Bacillariophyceae). Eur. J. Phyco., 38: 351–360.

    Article  Google Scholar 

  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv., 25 (3): 294–306.

    Article  Google Scholar 

  • Cho J-Y, Choi J-S, Kong I-S, Park S-II, Kerr R G, Hong Y K. 2002. A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures. J. Appl. Phycol., 14 (5): 385–390.

    Article  Google Scholar 

  • Choi G-G, Bae M-S, Ahn C-Y, Oh H-M. 2008. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett., 30 (1): 87–92.

    Article  Google Scholar 

  • Choi G-G, Bae M-S, Ahn C-Y, Oh H-M. 2008. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Let., 30 (1): 87–92.

    Article  Google Scholar 

  • Chojnacka K, Marquez-Rocha F-J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnol., 3 (1): 21–34.

    Article  Google Scholar 

  • Connell L, Cattolico R A. 1996. Fragile algae: axenic culture of field-collected samples of Heterosigma carterae. Mar. Biol., 125 (2): 421–426.

    Article  Google Scholar 

  • Cottrell M T, Suttle C A. 1993. Production of axenic cultures of Micromonas pusilla (Prasinophyceae) using antibiotic. J. Phycol., 29 (3): 385–387.

    Article  Google Scholar 

  • Divan C L, Schnoes H K. 1982. Production of axenic Gonyaulax cultures by treatment with antibiotics. App. Environ. Microb., 44 (1): 250–254.

    Google Scholar 

  • Griesbeck C, Kobl I, Heitzer M. 2006. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol. Biotechnol., 34 (2): 213–223.

    Article  Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms: I. cyclotella nana hustedt, and detonula confervacea (cleve) gran. Cana. J. Microbiol., 8 (2): 229–239.

    Article  Google Scholar 

  • Huang Z H, Liu X J, Hu Z X, Duan S S. 2007. Effects of antibiotics on the growth of Isochrysis zhangjiangensis and axenic culture. Ecologic. Sci., 26 (2): 120–121. (in Chinese with English abstract)

    Google Scholar 

  • Katoh H, Furukawa J, Tomita-Yokotani K, Nishi Y. 2012. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochimica et Biophysica Acta, 1817 (8): 1 499–1 505.

    Article  Google Scholar 

  • Lee Y -K. 2001. Microalgal mass culture systems and methods: their limitation and potential. J. Appl. Phycol., 13 (4): 307–315.

    Article  Google Scholar 

  • Li J H, Huang X H, Liu H L. 2009. Sensitivity to antibiotics and axenic culture of Oocystis borgei. J. Guangdong. Ocean University, 29 (3): 37–41. (in Chinese with English abstract)

    Google Scholar 

  • Lin W, Chen D, Liu X Y. 2000. Marine microalgal axenation and comparison of growth characteristics between natural and axenic marine microalgae. Oceanol. Limnol. Sinica, 31 (6): 647–652. (in Chinese with English abstract)

    Google Scholar 

  • Lin W. 2000. Axenization of several marine microalgal cultures. Mar. Sci., 24 (10): 4–6. (in Chinese with English abstract)

    Google Scholar 

  • Liu X J, Duan S S. 2006. Study on the susceptibility tests of antibiotics and obtain axenic culture of Nannochloropsis ocutala. Ecologic. Sci., 25 (6): 493–495. (in Chinese with English abstract)

    Google Scholar 

  • Miao X L, Wu Q Y. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technol., 97 (6): 841–846.

    Article  Google Scholar 

  • Perez-Garcia O, Escalante F M E, De-Bashan L E, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water. Res., 45 (1): 11–36.

    Article  Google Scholar 

  • Rosenberg J N, Oyler G A, Wilkinson L, Betenbaugh M J. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotech., 19 (6): 430–436.

    Article  Google Scholar 

  • Skulberg O M. 2000. Microalgae as a source of bioactive molecules-experience from cyanophyte research. J. Appl. Phycol., 12 (3-5): 341–348.

    Article  Google Scholar 

  • Sloth J K, Wiebe M G, Eriksen N T. 2006. Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme. Microb. Tech., 38 (1-2): 168–175.

    Article  Google Scholar 

  • Spencer C P. 1952. On the use of antibiotics for isolating bacteria-free cultures of marine phytoplankton organisms. J. Mar. Biol. Assoc. UK., 31 (1): 97–106.

    Article  Google Scholar 

  • Su J Q, Yang X R, Zheng T L, Hong H S. 2007. An efficient method to obtain axenic cultures of Alexandrium tamarense —a PSP-producing dinoflagellate. J. Microbiol. Meth., 69 (3): 425–430.

    Article  Google Scholar 

  • Subashchandrabose S R, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. 2011. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv., 29 (6): 896–907.

    Article  Google Scholar 

  • Underwood G J C, Boulcott M, Raines C A. 2004. Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition and pathways of production. J. Phycol., 40 (2): 293–304.

    Article  Google Scholar 

  • Vázquez-Martínez G, Rodriguez M H, Hernández-Hernández F, Ibarra J E. 2004. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. J. Microbiol. Meth., 57 (1): 115–121.

    Article  Google Scholar 

  • Wigglesworth-Cooksey B, Berglund D, Cooksey K E. 2001. Cell-cell and cell-surface interactions in an illuminated biofilm: implications for marine sediment stabilization. Geochem. Trans., 2: 75.

    Article  Google Scholar 

  • Zhang X W, Shi X M, Chen F. 1999. A kinetic model for lutein production by the green microalga Chlorella protothecoides in heterotrophic culture. J. Ind. Microbiol. Biot., 23 (6): 503–507.

    Article  Google Scholar 

  • ZoBell C E. 1941. Studies on marine bacteria. I. the cultural requirements of heterotrophic aerobes. J. Mar. Res., 4: 42–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehou Pan  (潘克厚).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2011CB200901), the National Technical Supporting Project Foundation (No. 2011BAD14B01), and the National High Technology Research and Development Program of China (863 Program) (No. 2013AA065801)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wang, S., Zhang, L. et al. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations. Chin. J. Ocean. Limnol. 34, 79–85 (2016). https://doi.org/10.1007/s00343-015-4288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4288-2

Keywords

Navigation