Skip to main content

Advertisement

Log in

Planar time-resolved laser-induced incandescence for pressurized premixed Jet-A combustion

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Understanding soot formation in flames burning Jet-A fuel at elevated pressures is critical for reducing emissions from aeroengine combustion. In this work, we utilize a single camera single laser shot two-dimensional (2D) time-resolved laser-induced incandescence (TiRe-LII) technique to acquire soot incandescence decay images at 10 MHz in premixed prevaporized Jet-A/air flames at 1, 2.4, and 3.8 bar. By using a TiRe-LII model, the incandescence decay signals are mapped to primary particle size estimates. Then, model estimates are compared with in-situ soot samples, which are collected using a custom designed thermophoretic sampling system and analyzed with transmission electron microscopy. Results show small soot particle diameters between 13 and 16 nm and large aggregates with approximately 200 particles on average. A good match is obtained between the TiRe-LII and extracted soot sample data, where estimates are within 2 nm for all test conditions. This work illustrates how a single camera LII measurement technique can be implemented with a TiRe-LII model to obtain instantaneous 2D estimates of soot primary particle sizes in pressurized systems. By using this imaging TiRe-LII technique, soot formation in more complex and realistic gas turbine combustors can potentially be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.C. Moffet, K.A. Prather, Proc. Natl. Acad. Sci. 106, 11,872 (2009)

    Article  Google Scholar 

  2. J. Hansen, L. Nazarenko, Proc. Natl. Acad. Sci. 101, 423 (2004)

    Article  ADS  Google Scholar 

  3. M. Commodo, F. Picca, G. Vitiello, G.D. Falco, P. Minutolo, A. D’Anna, Proc. Combust. Inst. 38, 1487 (2021)

    Article  Google Scholar 

  4. G.C. Borillo, Y.S. Tadano, A.F.L. Godoi, T. Pauliquevis, H. Sarmiento, D. Rempel, C.I. Yamamoto, M.R. Marchi, S. Potgieter-Vermaak, R.H. Godoi, Sci. Total Environ. 644, 675 (2018)

    Article  ADS  Google Scholar 

  5. K.M. Bendtsen, E. Bengtsen, A.T. Saber, U. Vogel, Environ. Health 20, 1 (2021)

    Article  Google Scholar 

  6. R.K. Mishra, S. Chandel, Int. J. Turbo Jet Eng. 36, 61 (2016)

    Article  Google Scholar 

  7. M. Maricq, S.J. Harris, J.J. Szente, Combust. Flame 132, 328 (2003)

    Article  Google Scholar 

  8. B. Zhao, Z. Yang, M.V. Johnston, H. Wang, A.S. Wexler, M. Balthasar, M. Kraft, Combust. Flame 133, 173 (2003)

    Article  Google Scholar 

  9. H. Michelsen, C. Schulz, G. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2 (2015)

    Article  Google Scholar 

  10. Z. Zhang, L. Zhou, X. He, Appl. Energy Combust Sci. 13, 100,103 (2023)

    Google Scholar 

  11. T.A. Sipkens, J. Menser, T. Dreier, C. Schulz, G.J. Smallwood, K.J. Daun, Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges. https://doi.org/10.1007/s00340-022-07769-z, Appl. Phys. B 128, 72 (2022)

  12. Y. Chen, E. Cenker, D.R. Richardson, S.P. Kearney, B.R. Halls, S.A. Skeen, C.R. Shaddix, D.R. Guildenbecher, Opt. Lett. 43, 5363 (2018)

    Article  ADS  Google Scholar 

  13. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006)

    Article  ADS  Google Scholar 

  14. E. Weingartner, H. Burtscher, U. Baltensperger, Atmos. Environ. 31, 2311 (1997)

    Article  ADS  Google Scholar 

  15. R. Hadef, K.P. Geigle, W. Meier, M. Aigner, Int. J. Therm. Sci. 49, 1457 (2010)

    Article  Google Scholar 

  16. R. Stirn, T.G. Baquet, S. Kanjarkar, W. Meier, K.P. Geigle, H.H. Grotheer, C. Wahl, M. Aigner, Combust. Sci. Technol. 181, 329 (2009)

    Article  Google Scholar 

  17. Y. Zhang, F. Liu, D. Clavel, G.J. Smallwood, C. Lou, Energy 177, 421 (2019)

    Article  Google Scholar 

  18. G.B. Kim, S.W. Cho, J.H. Lee, D.S. Jeong, Y.J. Chang, C.H. Jeon, Trans. Korean Soc. Mech. Eng. 30, 973 (2006)

    Article  Google Scholar 

  19. H. Bladh, J. Johnsson, N.E. Olofsson, A. Bohlin, P.E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011)

    Article  Google Scholar 

  20. R.L.V. Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  21. M. Hofmann, B. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629 (2007)

    Article  ADS  Google Scholar 

  22. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003)

    Article  ADS  Google Scholar 

  23. J.E. Dec, A.O. Zur Loye, D.L. Siebers, SAE Tech. Pap. 100, 277 (1991)

    Google Scholar 

  24. G. Wiltafsky, W. Stolz, J. Köhler, C. Espey, The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet. SAE Tech. Pap, 105, 978–988 (1996). http://www.jstor.org/stable/44729111

  25. K. Inagaki, S. Takasu, K. Nakakita, In-cylinder Quantitative Soot Concentration Measurement By Laser-Induced Incandescence. SAE Tech, 108, 574–586. (1999). http://www.jstor.org/stable/44743394

  26. R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156, 120 (2009)

    Article  Google Scholar 

  27. K.P. Geigle, J. Zerbs, R. Hadef, C. Guin, Appl. Phys. B 125, 96 (2019)

    Article  ADS  Google Scholar 

  28. M.L. Passarelli, S.E. Wonfor, A.X. Zheng, S.R. Manikandan, Y. Mazumdar, J.M. Seitzman, A.M. Steinberg, H. Bower, J. Hong, K. Venkatesan, M. Benjamin, AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum (2022)

  29. H. Michelsen, F. Liu, B. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  30. C. Schulz, B. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  31. H.A. Michelsen, M.A. Linne, B.F. Kock, M. Hofmann, B. Tribalet, C. Schulz, Appl. Phys. B 93, 645 (2008)

    Article  ADS  Google Scholar 

  32. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quant. Spectrosc. Radiat. Transf. 93, 301 (2005)

    Article  ADS  Google Scholar 

  33. M.W. Chase Jr, J. Phys. Chem. Ref. Data Monogr. 9 14, 535 (1998)

  34. L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (2000)

    Article  ADS  Google Scholar 

  35. A. Filippov, D. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000)

    Article  Google Scholar 

  36. N.A. Fuchs, Pure Appl. Geophys. 56, 185 (1963)

    Article  Google Scholar 

  37. N.A. Fuchs, R.E. Daisley, M. Fuchs, C.N. Davies, M.E. Straumanis, Phys. Today 18, 73 (1965)

    Article  Google Scholar 

  38. P. Wright, Discuss. Faraday Soc. 30, 100 (1960)

    Article  Google Scholar 

  39. D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gülder, Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  40. A. Brasil, T. Farias, M. Carvalho, J. Aerosol Sci. 30, 1379 (1999)

    Article  ADS  Google Scholar 

  41. S.R. Forrest, T.A. Witten Jr., J. Phys. A: Math. Theor. 12, L109 (1979)

    Article  ADS  Google Scholar 

  42. A.M. Brasil, T.L. Farias, M.G. Carvalho, Aerosol Sci. Technol. 33, 440 (2000)

    Article  ADS  Google Scholar 

  43. F. Liu, K. Daun, D. Snelling, G. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  44. B. McCoy, C. Cha, Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  45. A. X. Zheng, S. Manikandan, S. E. Wonfor, A. M. Steinberg, & Y. C. Mazumdar, Planar Time-Resolved Laser-Induced Incandescence for Particulate Emissions in Premixed Flames at Elevated Pressures. In AIAA SCITECH 2023 Forum (p. 2435) (2023)

  46. S.R. Manikandan, Characterization of non-volatile particulate matter in pressurized laminar jet-a flames via thermophoretic sampling. Master’s thesis (2022)

  47. A.M. Vargas, O.L. Gülder, Rev. Sci. Instrum. 87, 055,101 (2016)

    Article  Google Scholar 

  48. X. Hu, Z. Yu, L. Chen, Y. Huang, C. Zhang, F. Salehi, R. Chen, R.M. Harrison, J. Xu, Combust. Flame 236, 111,760 (2022)

    Article  Google Scholar 

  49. A. Baldelli, U. Trivanovic, J.C. Corbin, P. Lobo, S. Gagné, J.W. Miller, P. Kirchen, S. Rogak, Aerosol Air. Qual. Res. 20, 730 (2020)

    Article  Google Scholar 

  50. J. Xing, L. Shao, W. Zhang, J. Peng, W. Wang, C. Hou, S. Shuai, M. Hu, D. Zhang, J. Environ. Sci. 76, 339 (2019)

    Article  Google Scholar 

  51. W. Li, L. Shao, D. Zhang, C.U. Ro, M. Hu, X. Bi, H. Geng, A. Matsuki, H. Niu, J. Chen, J. Clean. Prod. 112, 1330 (2016)

    Article  Google Scholar 

  52. J. Pagels, A.F. Khalizov, P.H. McMurry, R.Y. Zhang, Aerosol Sci. Technol. 43, 629 (2009)

    Article  ADS  Google Scholar 

  53. M. Maugendre, Study of soots particles in kerosene and biofuel flames. Ph.D. thesis (2009)

  54. S.A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  ADS  Google Scholar 

  55. A. Liati, D. Schreiber, P. Alpert, Y. Liao, B. Brem, P.C. Arroyo, J. Hu, H. Jonsdottir, M. Ammann, P.D. Eggenschwiler, Environ. Pollut. 247, 658 (2019)

    Article  Google Scholar 

  56. W. Liu, X. Liang, A. Li, B. Lin, H. Lin, D. Han, Fuel 267, 117,244 (2020)

    Article  Google Scholar 

  57. A. Liati, B.T. Brem, L. Durdina, M. Vögtli, Y.A.R. Dasilva, P.D. Eggenschwiler, J. Wang, Environ. Sci. Technol. 48, 10,975 (2014)

    Article  Google Scholar 

  58. S. Menanteau, R. Lemaire, Entropy 22, 21 (2019)

    Article  ADS  Google Scholar 

  59. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 253 (2011)

    Article  ADS  Google Scholar 

  60. R. Lemaire, S. Menanteau, Modeling laser-induced incandescence of Diesel soot—Implementation of an advanced parameterization procedure applied to a refined LII model accounting for shielding effect and multiple scattering within aggregates for α _ T α T and E\left (m\right) E m assessment. Appl. Phys. B 127 1–19 (2021)

  61. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 119, 745 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, Project 74 through FAA Award Number 13-C-AJFE-GIT-079 under the supervision of Nicole Didyk-Wells. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy X. Zheng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 230 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, A.X., Manikandan, S.R., Wonfor, S.E. et al. Planar time-resolved laser-induced incandescence for pressurized premixed Jet-A combustion. Appl. Phys. B 129, 71 (2023). https://doi.org/10.1007/s00340-023-08015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08015-w

Navigation