Skip to main content
Log in

Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a tri-layer metamaterial composed of a split-disk structure array sandwiched with two layers of twisted sub-wavelength metal grating is proposed and investigated numerically in terahertz region. The numerical results exhibit that linear polarization conversion via diode-like asymmetric transmission for terahertz waves within ultra-broadband frequency range is achieved due to Fabry-Perot-like resonance. In our design, the conversion polarization transmission coefficient for normal incidence is greater than 90 % in the range of 0.23–1.17 THz, equivalent to 134.3 % relative bandwidth. The physical mechanism of the broadband linear polarization conversion effect is further illustrated by simulated electrical field distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jackson JD (1999) Classical electrodynamics, 3rd ed. (Wiley)

  2. Born M and Wolf E (1999) Principles of Optics (Cambridge University)

  3. Grischkowsky D, Keiding S (1990) THz time-domain spectroscopy of high Tc substrates. Appl Phys Lett 57:1055

    Article  CAS  Google Scholar 

  4. Nose T, Sato S, Mizuno K, Bae J, Nozokido T (1997) Refractive index of nematic liquid crystals in the submillimeter wave region. Appl Opt 36:6383–6387

    Article  CAS  Google Scholar 

  5. Chen CY, Tsai TR, Pan CL, Pan RP (2003) Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals. Appl Phys Lett 83:4497

    Article  CAS  Google Scholar 

  6. Masson JB, Gallot G (2006) Terahertz achromatic quarter-wave plate. Opt Lett 31:265–267

    Article  Google Scholar 

  7. Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI (2006) Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett 97:177401

    Article  CAS  Google Scholar 

  8. Liu H, Genov DA, Wu DM, Liu YM, Liu ZW, Sun C, Zhu SN, Zhang X (2007) Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys Rev B 76:073101

    Article  Google Scholar 

  9. Zhang S, Park YS, Li JS, Lu XC, Zhang WL, Zhang X (2009) Negative refractive index in chiral metamaterials. Phys Rev Lett 102:023901

    Article  Google Scholar 

  10. Hao J, Yuan Y, Ran L, Jiang T, Kong JA, Chan CT, Zhou L (2007) Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 99:063908

    Article  Google Scholar 

  11. Chin JY, Lu M, Cui TJ (2008) Metamaterial polarizers by electric-field-coupled resonators. Appl Phys Lett 93:251903

    Article  Google Scholar 

  12. Sun W, He Q, Hao J, Zhou L (2011) A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt Lett 36:927–929

    Article  Google Scholar 

  13. Pfeiffer C, Grbic A (2013) Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett 102:231116

    Article  Google Scholar 

  14. Yu NF, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150

    Article  CAS  Google Scholar 

  15. Zhao Y, Belkin MA, Alù A (2012) Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3:870

    Article  CAS  Google Scholar 

  16. Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X, Zhu Y (2013) Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys Rev Lett 110:207401

    Article  Google Scholar 

  17. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14:1394–1399

    Article  CAS  Google Scholar 

  18. Schwanecke AS, Fedotov VA, Khardikov VV, Prosvirnin SL, Chen Y, Zheludev NI (2008) Nanostructured metal film with asymmetric optical transmission. Nano Lett 8:2940–2943

    Article  CAS  Google Scholar 

  19. Singh R, Plum E, Menzel C, Rockstuhl C, Azad AK, Cheville RA, Lederer F, Zhang W, Zheludev NI (2009) Terahertz metamaterial with asymmetric transmission. Phys Rev B 80:153104

    Article  Google Scholar 

  20. Menzel C, Rockstuhl C, Lederer F (2010) Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 82:053811

    Article  Google Scholar 

  21. Menzel C, Helgert C, Rockstuhl C, Kley EB, Tünnermann A, Pertsch T, Lederer F (2010) Asymmetric transmission of linearly polarized light at optical metamaterials. Phys Rev Lett 104:253902

    Article  CAS  Google Scholar 

  22. Kang M, Chen J, Cui HX, Li Y, Wang HT (2011) Asymmetric transmission for linearly polarized electromagnetic radiation. Opt Express 19:8347–8356

    Article  Google Scholar 

  23. Wei Z, Cao Y, Fan Y, Yu X, Li H (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99:221907

    Article  Google Scholar 

  24. Huang C, Feng YJ, Zhao JM, Wang ZB, Jiang T (2012) Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys Rev B 85:195131

    Article  Google Scholar 

  25. Mutlu M, Akosman AE, Serebryannikov AE, Ozbay E (2012) Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys Rev Lett 108:213905

    Article  Google Scholar 

  26. Cheng YZ, Nie Y, Wang X, Gong RZ (2013) An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator. Appl Phys A Mater Sci Process 111:209–215

    Article  CAS  Google Scholar 

  27. Shi JH, Liu XC, Yu SW, Lv TT, Zhu Z, Ma HF, Cui TJ (2013) Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl Phys Lett 102:191905

    Article  Google Scholar 

  28. Cheng YZ, Nie Y, Cheng ZZ, Wu L, Wang X, Gong RZ (2013) Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators. J Electromagn Waves Appl 27:1850–1858

    Article  Google Scholar 

  29. Liu DY, Li MH, Zhai XM, Yao LF, Dong JF (2014) Enhanced asymmetric transmission due to fabry-perot-like cavity. Opt Express 22:11707–11712

    Article  Google Scholar 

  30. Huang XJ, Xiao B, Yang D, Yang HL (2015) Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial. Opt Commun 338:416–421

    Article  CAS  Google Scholar 

  31. Liu DJ, Xiao ZY, Ma XL, Ma QW, Xu XX, Wang ZH (2015) Asymmetric transmission of chiral metamaterial slab with double L resonators. Opt Commun 338:359

    Article  CAS  Google Scholar 

  32. Wu L, Yang ZY, Cheng YZ, Zhao M, Gong RZ, Zheng Y, Duan J, Yuan XH (2014) Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl Phys Lett 103:021903

    Article  Google Scholar 

  33. Wu L, Yang ZY, Cheng YZ, Gong RZ, Zhao M, Zheng Y, Duan J, Yuan X (2014) Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl Phys A Mater Sci Process 116:643–648

    Article  CAS  Google Scholar 

  34. Liu DJ, Xiao ZY, Ma XL, Wang ZH (2015) Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking. Appl Phys Express 8:052001

    Article  Google Scholar 

  35. Xiao ZY, Liu DJ, Ma XL, Wang ZH (2015) Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt Express 23:7053–7061

    Article  CAS  Google Scholar 

  36. Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  CAS  Google Scholar 

  37. Williams BS (2007) Terahertz quantum-cascade lasers. Nat Photon 1:517–525

    Article  CAS  Google Scholar 

  38. Cong L, Cao W, Zhang X, Tian Z, Gu J, Singh R, Han J, Zhang W (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103:171107

    Article  Google Scholar 

  39. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304

    Article  CAS  Google Scholar 

  40. Cheng YZ, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong RZ, Bhaskaran M, Sriram S, Abbott D (2014) Ultrabroadband reflective polarization convertor for terahertz waves. Appl Phys Lett 105:181111

    Article  Google Scholar 

  41. He M, Han J, Zhen T, Gu J, Xing Q (2011) Negative refractive index in chiral spiral metamaterials at terahertz frequencies. Optik 122:1676–1679

    Article  Google Scholar 

  42. Fan RH, Zhou Y, Ren XP, Peng RW, Jiang SC, Xu DH, Xiong X, Huang XR, Wang M (2015) Freely tunable broadband polarization rotator for terahertz waves. Adv Mater 27:1201–1206

    Article  CAS  Google Scholar 

  43. Cheng YZ, Gong RZ, Cheng ZZ (2016) A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun 361:41–46

    Article  Google Scholar 

  44. Xu HX, Wang GM, Qi MQ, Cai T (2013) Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial. Prog Electromag Res 143:243–261

    Article  Google Scholar 

  45. Cheng YZ, Wu CJ, Cheng ZZ, Gong RZ (2016) Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator. Prog Electromag Res 155:105–113

    Article  Google Scholar 

  46. Chiang YJ, Yen TJ (2013) A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl Phys Lett 102:011129

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. U1435209, and 61605147) and the Youth science and technology backbone cultivation plan project of the Wuhan University of Science and Technology (Grant No. 2016xz010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Gong, R. & Wu, L. Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves. Plasmonics 12, 1113–1120 (2017). https://doi.org/10.1007/s11468-016-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0365-4

Keywords

Navigation